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PREFACE

This volume originates from the lectures delivered during a CISM
course held in Udine in Summer 2009. The editors organised that
doctoral school on the problem of ratcheting and cyclic loading of
soils with the aim of collecting the experience and knowledge on this
subject that the geotechnical community has been accumulating over
the last five decades. The book is thus aimed at doctoral students,
researchers and geotechnical engineers who are interested in adopt-
ing the so-called displacement based design methods for geotechnical
systems. Displacement based design is now encouraged by all current
national and international regulations, where transient loads are not
negligible in comparison with permanent actions.
The original suggestion that there was a need to gather together, sys-
tematically, the huge amount of work that had already been carried
out on this topic, to organise the course, and to publish this volume
came from Professor Michele Jamiolkowsi. He also proposed the title
of the course and the names of the coordinators. For all these rea-
sons, for his scientific support and for his esteem, the Editors want
warmly to acknowledge the contribution made by Michele, who has as
usual demonstrated his enthusiasm for the promotion of scientific ac-
tivities related to geotechnical engineering and has always been aware
of the current needs of geotechnical designers.
The course aimed to provide a comprehensive description of the me-
chanical response of soils (granular and cohesive materials) under
cyclic loading, with the final goal of providing the geotechnical en-
gineer with the theoretical and analytical tools necessary (i) for the
evaluation of settlements developing with time under cyclic, environ-
mentally induced, loads (such as wave motion, wind actions, water
table level variation) and their consequences for the serviceability and
durability of structures such as the shallow or deep foundations used
in offshore engineering, caisson breakwaters, ballast and airport pave-
ments and also (ii) to interpret monitoring data, obtained from both
natural and artificial slopes and earth embankments, for the purposes
of risk assessment and mitigation.
In fact, geotechnical designers currently often face many difficulties in
evaluating the mechanical effects of non-monotonic loadings because
(i) many aspects of the mechanical response of soils under very large
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numbers of cycles of loading are not yet well known, (ii) constitutive
models capable of reproducing the observed response are often sophis-
ticated and appear excessively complex for the end user, and (iii) the
computational time required for numerical solution of boundary value
problems in which large numbers of cycles of loading are applied is
often substantial. In order to provide some rational route through
the relevant research findings, this volume follows a path which be-
gins with micromechanical observations, passes through the analysis
of laboratory experimental test results on single element soil speci-
mens, and arrives at the analysis of boundary value problems. One
of the challenges facing anyone embarking on the modelling or analy-
sis of geotechnical problems is the particle-continuum duality of soils.
As an example, the accumulation of irreversible strains through the
application of many cycles of very small amplitude of loading results
essentially from the fact that in general the representative elementary
volume of soil for the purposes of continuum analysis is itself a highly
redundant micro-structure composed of millions of grains/clusters of
soil particles.
The accumulation of irreversible strains, as in general redundant
structures, is essentially the result of either non-symmetric loading
conditions or non-symmetric geometries. The asymmetry of the me-
chanical response of soil roughly coincides with the anisotropy of the
structure or fabric of the soil - the arrangement of particles and the
contacts between particles. As soils are deformed, the probability of
the evolution of the internal fabric is closely related to the stability
of local contacts between the grains. The non-linearities of the me-
chanical response of soils are the result at the mesoscale of the large
displacements (large in relation to the particle size) occurring at the
microscale (grain sliding and grain rotation and rearrangement of
stress chains). The evolution of fabric is dominated by the current
microstructure and by the applied mechanical perturbation. There
may be a progressive stabilisation of strains under cyclic loading to-
wards a so-called plastic adaptation state which can be interpreted as
a reduction in the probability of further fabric evolution, whereas, at
the same time, an increase in the strain rate (cyclic fatigue) is usually
associated with a progressive destabilisation which might result either
from evolution of the nature of the contacts between particles (such as
the breakdown of bonding in cemented sands or other structured soils)
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or from progressive damage of the grains themselves (as in carbonate
sands, lightweight aggregates, where the particles themselves have a
brittle mechanical response, breaking into many pieces when the stress
conditions within the particle become too high). The problem of qual-
itatively and quantitatively assessing the progressive accumulation of
strains - and the phenomena of shake-down, ratcheting, and progres-
sive failure - in soils under quasi-static or more rapid cyclic loading
is presented through discussion of experimental, theoretical, numeri-
cal and computational findings. Drained and undrained deformations
of cohesive and frictional materials are considered. The presence of
fluids within the pores of the soil generates coupling effects which can
be interpreted as a further degree of redundancy for the material mi-
crostructure. Different classes of constitutive modelling theories are
described including standard non-associated elasto-plastic constitutive
models with anisotropic strain hardening rules, generalised plasticity,
bounding surface plasticity and viscoplasticity. The response of these
different classes of model to cyclic loading is explored.
Three chapters are devoted to the challenges of numerical implemen-
tation of constitutive models into finite element codes under static and
dynamic conditions. Two chapters are used to explore the concept of
macroelement modelling, which can provide a very useful engineer-
ing tool, built around the definition of appropriate generalised work-
conjugate forces and displacements, which can be used for the solu-
tion of problems of soil-structure interaction in a simplified manner
Such an approach is well supported by programmes of experimental
observation and is particularly appropriate for cyclic loading since,
by considerably reducing the number of unknowns to be determined,
it seriously reduces the computational times and costs. Finally, some
engineering problems related to offshore structures (including the soil-
structure interaction of deep water risers placed on the sea bottom
under the action of waves, and the progressive damage of the soil-pile
interface under cyclic environmental loads) are presented in order to
demonstrate the practical impact of the phenomena of cyclic loading
on geotechnical design at prototype scale.. There is inevitably a great
range of approaches to the problems of cyclic loading implicit in the
various chapters. This heterogeneity (analysis, numerical modelling,
physical modelling, laboratory testing, design, . . . ) will encourage the
reader to approach the same problem from different and sometimes
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orthogonal viewpoints and to recognise the challenges that remain in
the characterisation of the mechanical behaviour of soils under envi-
ronmentally induced cyclic loads.

The editors, even on behalf of all the authors, want to warmly
acknowledge Miss Dalila Vescovi for her precious help in revising the
texts and editing all the papers.

Claudio di Prisco, Milano
David Muir Wood, Dundee
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Behaviour of Granular Soils Under
Environmentally Induced Cyclic Loads

Torsten Wichtmann * and Theodor Triantafyllidis *

* Institute for Soil Mechanics and Rock Mechanics, Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany

1 Introduction

Cyclic loading and its impacts are of practical relevance for many prob-
lems in geotechnical engineering. Some examples of non-endogenous nature
are illustrated in Fig. 1. A cyclic loading may be caused by traffic (high-
speed trains, magnetic levitation trains), industrial sources (crane rails, ma-
chine foundations), wind and waves (on-shore and off-shore wind power
plants, coastal structures) or repeated filling and emptying processes (wa-
tergates, tanks and silos). Furthermore, construction processes (e.g. vibro-
installation of sheet piles) and mechanical compaction (e.g. vibratory com-
paction) impose cyclic loads into the soil. A cyclic loading of the soil may
be also caused by endogenous sources. Earthquake events due to a slip be-
tween adjacent tectonic plates lead to a propagation of shear waves. The
shear waves induce a cyclic shearing of the soil. The cyclic loading of the
soil can lead to an accumulation of permanent deformations or to a possible
liquefaction due to a build-up of excess pore water pressure.

If the repeated loading involves a large number of cycles (N > 103)
with a relative small strain amplitude (εampl < 10−3) one speaks of a high-
or polycyclic loading. In many cases the cyclic loading is multiaxial, for
example due to traffic loading (see the changes of stress components due
to a passing wheel illustrated in Fig. 2a) or in the case of offshore wind
power plants due to the different directions and frequencies of the wind
and wave loading. Furthermore, the time history of the loading may be
irregular, that means the amplitude changes from cycle to cycle. As an
example, the irregular time history of shear stress during an earthquake is
shown schematically in Fig. 2b.

It depends on the boundary conditions if a cyclic loading leads to an
accumulation of residual strains and/or to changes in the average stress.
Closed stress loops result in not perfectly closed strain loops or vice versa
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Figure 1. Sources of cyclic loading of soils
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(Fig. 3a,b). A simultaneous accumulation of stress and strain in mixed
boundary value problems is also possible (Fig. 3c). The accumulation
of strain leads to residual settlements of foundations under cyclic loading
(Fig. 4). The magnitude of these settlements depends on the loading (aver-
age load, load amplitude) and on the current state of the subsoil (void ra-
tio, cyclic preloading). Even small amplitudes can significantly contribute to
permanent settlements if the number of cycles is high. Some structures sub-
jected to a cyclic loading are extremely sensitive to differential settlements,
which must be kept small in order to ensure the operational or serviceability
requirements. For example, offshore wind turbines loose their serviceability
if a certain amount of tilting (2◦ − 5◦) of the structure is surpassed. High-
speed trains also require low tolerances concerning differential settlements
of the railway tracks. In statically indeterminate structures the differential
settlements may cause changes of internal forces leading to an acceleration
of deterioration processes in the structure. Vice versa, a change in the reac-
tion forces leads to a different rate of settlement accumulation. In all these
cases an accurate prediction of the residual deformations for the life-time
of a structure, that means for several decades of operation is necessary. A
suitable method for such a prediction is discussed in detail in Section 3.

a) b) c)

ε2 ε2

ε1

1 1

2 2

ε1

ε2

ε1

1

2

  pre-
scribed

  pre-
scribed

0 0

0
0

Figure 3. Accumulation of stress or strain, illustrated for the two-
dimensional case

In water-saturated soils under either partly drained or undrained con-
ditions the pore water pressure may accumulate with increasing number of
load cycles. This is due to the fact that the compaction of the soil usually
occurring under drained conditions is prevented. The effective stress, and
with it both the shear strength and the stiffness, decrease. The decreased
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Figure 4. Accumulation of the settlement of a foundation due to cyclic
loading

shear strength may lead to a loss of the bearing capacity of a foundation. In
the extreme case the pore water pressure may equalize the total stress, the
effective stress becomes nil and the shear strength vanishes. The soil then
behaves like a suspension and this phenomenon is called “liquefaction” (a
more detailed discussion of this aspect is in the following Section 4).

In the context of foundations subjected to cyclic loading, one may distin-
guish between the short-term and the long-term behaviour. Studies of the
short-term behaviour deal with the deformations of the structure and the
subsoil within a few cycles (e.g. examination of the dynamic characteristics
of a system). In the majority of such studies a linear elastic response is
assumed, neglecting any possible changes in the soil state variables during
the event. A non-linear behaviour of the soil can be considered by per-
forming implicit finite element (FE) calculations. In long-term studies the
accumulation of settlements or the changes in the soil-structure interaction
are of main concern.

If the load cycles are applied at a low amplitude and with a low frequency
f = ω/(2π), the inertial forces are negligible and the cyclic loading is consid-
ered to be quasi-static. If the frequency is large, inertial forces are relevant
and the loading is dynamic. A harmonic excitation with the displacement u
= uampl cos(ωt) can be considered as quasi-static, if uamplω2 is significantly
smaller than the acceleration of gravity g. Often the amplitude-dependence
is ignored and the transition from a quasi-static to a dynamic loading is
considered to be at a frequency of f ≈ 5 Hz.

After a short description of available test devices in Section 2, the sub-
sequent sections concentrate on three important aspects of cyclic loading
of soils. Section 3 deals with the accumulation of strains due to a drained
polycyclic loading. The main influencing parameters are discussed within
the framework of a high-cycle accumulation (HCA) model which can be
used for predictions of long-term deformations of foundations. Section 4
discusses the main influencing parameters with respect to the accumulation
of pore water pressure due to an undrained cyclic loading. A brief summary
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of available methods for an estimation of the liquefaction risk in situ due
to an earthquake loading is also given. Finally, Section 5 deals with the
most important influencing parameters concerning the secant elastic stiff-
ness (small-strain stiffness) which is usually used in elastic calculations of
the short-term behaviour. Sections 3 to 5 are mainly dedicated to non-
cohesive soils. Findings from the literature are compared to test results of
the authors.

2 Test Devices

The behaviour of either soil or foundations under repeated loading can be
studied by performing different types of tests:

• element tests in the laboratory
• small-scale model tests
• model tests with increased gravitation (centrifuge model tests)
• large-scale model tests
• in-situ tests and measurements at real buildings (observational method)

The following sections focus on soil behaviour measured in element tests
performed in the laboratory. Different types of test devices are available.
They are illustrated schematically in Fig. 5:

a) axisymmetric triaxial tests on cylindrical specimens
b) true triaxial tests on cubical specimens
c) torsional shear tests on hollow cylinder specimens
d) simple shear tests
e) direct shear tests
f) shaking table tests
g) resonant column tests
h) measurement of wave velocities by means of piezoelectric elements

In most test devices both, a control of the stresses or loads induced at
the specimen boundaries or a control of the boundary displacements are
possible. The different types of tests are briefly illustrated for a stress
control in the following.

In most cyclic triaxial tests on cylindrical specimens (Fig. 5a), the axial
stress σ1 is cyclically varied, while the lateral stress σ2 = σ3 is kept constant.
Therefore, only uniaxial cycles with an inclination of the stress path of 1:3
in the p-q-plane are tested (where p = (σ1 + 2σ3)/3 and q = σ1 − σ3

are Roscoe’s stress invariants). When σ3 is oscillating in phase with σ1,
different inclinations of the stress cycles in the p-q-plane can be studied.
A phase shift between σ1(t) and σ3(t) results into elliptically shaped stress
loops. A scheme of the cyclic triaxial device used by the authors is shown
schematically in Fig. 6a.
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Figure 5. Different types of laboratory tests for studies of soil behaviour
under cyclic loading

aluminium rings
top cap

base plate

guidance rods
soil specimen

drainage
ball bearing
(hor. guidance)

ball bearing
(vert. guidance)

eccentric rod
electric motor

F displ. transducer

displ. transducer

b)a)

load cell

displacement
transducer

pressure 
transducers
(u, 3)

diff. pressure
transducer

cell pressure

back pressure u

soil specimen
(d = 10 cm,
 h = 20 cm)

drainage

axial load
Fav   Fampl+  -

av   ampl+  -3 3
(pneumatic 
 loading system)

Figure 6. a) Cyclic triaxial device and b) cyclic multidimensional simple
shear (CMDSS) device at Ruhr-University Bochum



www.manaraa.com

Behaviour of Gran. Soils Under Environ. Ind. Cyc. Loads 7

The cycles in the axisymmetric triaxial test are at most two-dimensional.
Three-dimensional cycles can be tested in a true triaxial test (Fig. 5b) with
a cyclic variation in all three principal stresses. During torsional shear
tests on hollow cylinder specimens (Fig. 5c) the cyclic variation of the inner
pressure σ3i, the outer pressure σ3a, the axial stress σ1 and the torsional
moment M results into four-dimensional stress loops.

In a simple shear test (Fig. 5d) either a shear stress or a displacement
is imposed on the upper boundary and the lateral boundaries are forced
to a linear displacement over the specimen height. The lateral stresses are
seldom measured. The problem of inhomogeneous stress and strain fields
within a specimen has been addressed for example by Budhu (1984) and
Budhu and Britto (1987). Some modified simple shear devices have been
used to apply a multiaxial cyclic shearing (see the CMDSS test device used
by the authors shown schematically in Fig. 6b).

The applicability of a direct shear test (Fig. 5e) for studying the material
behaviour under cyclic loading is limited. Such tests can be used to examine
changes in the granulometry within a shear band during cyclic loading (Helm
et al., 2000) or for studying the contact behaviour under cyclic loading
(Malkus, 2000).

Shaking table tests (Fig. 5f) are sometimes applied in liquefaction stud-
ies. In those tests a water-saturated sand layer is subjected to an earthquake
loading. In some studies several shaking tables were mounted along orthog-
onal directions onto each other in order to apply a multidimensional cyclic
loading.

base mass
ball bearing

soil specimen
pressure cell

plexiglas cylinder

acceleration
transducers

electrodynamic
exciters

top mass
b)a) c)

JL

J0

J

L

x

r x=L

x=0

J1

J0

M(x+dx)

M(x)

x+dx
x

I,G

Figure 7. a) Principle, b) scheme and c) photo of the resonant column
(RC) device at Ruhr-University Bochum

Resonant Column (RC) tests (Fig. 5g) are applied for the determination
of the small-strain shear modulus. The system of the RC test consists of a
cylindrical specimen, the base mass and the top mass (Fig. 7a). The RC
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devices are further distinguished depending on the bearing of these masses
or the excitation system. The RC device used by the authors (Fig. 7b,c)
is of the “free-free” type, that is both the top and the base mass are fully
rotatable. The system of the specimen and the end masses is dynamically
excited by a torsional moment. The frequency of excitation is varied in
order to determine the resonant frequency fR. The secant shear stiffness G
is determined from fR:

G =

(
2 π h fR

a

)2

� (1)

Therein h is the height of the specimen, � is the soil density and a is a
parameter depending on the mass moments of inertia J , J0 and JL of the
specimen and the end masses (Fig. 7a, for details see Wichtmann and Tri-
antafyllidis (2009a)). Material damping can be obtained using different
methods. Observing the decay of free vibration it can be calculated from

D =
1

2π
Δ1 (2)

wherein Δ1 is the inclination of a log-linear plot of the strain amplitude
versus the number of cycles (Fig. 8a). Alternatively, the damping ratio D
can be computed as it follows from the area ΔW of the Lissajous figure
(Fig. 8b):

D =
1

4π

ΔW

We
(3)

with We being the elastic energy of the specimen when the maximum shear
strain is applied (Wichtmann and Triantafyllidis, 2009a). Using the half
power method (Fig. 8c) the damping ratio is calculated from

D =
f2 − f1
fR

(4)

wherein f1 and f2 are the frequencies at an amplitude which is 1/
√
2 times

smaller than that at the resonant frequency fR.
Piezoelectric elements may be used to measure the shear (S-) wave ve-

locity vS and the compression (P-) wave velocity vP in soil samples (e.g.
in the triaxial test). The waves generated by piezoelectric elements usually
propagate with strain amplitudes less than 10−6. The triaxial device used
by the authors is schematically illustrated in Fig. 9a. The travel time of the
wave in the specimen is determined by comparing the transmitted with the
received signal (Fig. 9b). Since the distance between the two piezoelectric
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Figure 8. Different methods to determine material damping in a RC test:
a) from the decay of free vibration, b) from the area of the Lissajous figure
and c) using the half power method

elements on the base and the top cap is known (the distance of the tips is
used in the case of bender elements) the wave velocities can be calculated.
The small-strain shear modulus Gmax and the small-strain constrained elas-
tic modulus Mmax can be obtained from

Gmax = � (vS)
2 and Mmax = � (vP )

2. (5)

Five independent wave velocities can be determined in a cylindrical soil
sample if piezoelectric elements for measurements in the horizontal direction
are available (Fig. 9c).

Fig. 10 gives a useful overview about the range of strain amplitudes
usually tested in the different devices.

3 Accumulation of Strain Due to a Drained
Polycyclic Loading

3.1 Strategies for FE Calculations

To compute irreversible displacements induced by cyclic loading by means of
finite element codes, two different calculation strategies can be used. One is
called pure implicit and it is illustrated for a shallow foundation in Fig. 11a.
Each cycle is calculated with many increments using a conventional consti-
tutive model formulated in terms of the rates of stress (σ̇) and strain (ε̇).
Elastoplastic multi-surface models (e.g. Mróz et al., 1978; Chaboche, 1994)
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Figure 9. Measurement of wave velocities in triaxial specimens: a) test
device at Ruhr-University Bochum, b) typical signals of a P-wave measure-
ment, c) five independent wave velocities measured in the horizontal or
vertical direction of a triaxial sample
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or the hypoplastic model with intergranular strain (e.g. von Wolffersdorff,
1996; Niemunis and Herle, 1997) may be used for this purpose. The pure
implicit strategy is suitable only for small numbers of cycles (N < 50). For
larger numbers of cycles the numerical error becomes excessive (Niemunis
et al., 2005b), let alone the large calculation effort.

A calculation strategy suitable for larger numbers of cycles combines
implicit and explicit parts (Fig. 11b). Only a few cycles are calculated im-
plicitly with many strain increments. Larger packages of cycles between
are calculated explicitly. The explicit parts of the calculation require a
constitutive formulation which takes packages of cycles ΔN as input and
which predicts the permanent strain due to these packages directly, with-
out tracing the oscillating strain path during the individual cycles. Such a
constitutive formulation is called “high-cycle accumulation (HCA) model”.
The external load is kept constant during the explicit parts of the calcula-
tion. Therefore, the accumulation of permanent strain due to cyclic loading
is treated similarly as a creep deformation in viscoplastic models.

t

F

t

ampl

t

F

F

t

a) pure "implicit" calculation
b) mixed "implicit" and
    "explicit" calculation

finite elements

implicit implicit

explicit explicit

control
cycle

Figure 11. FE calculation of the settlements of a shallow foundation under
cyclic loading: a) Pure implicit versus b) combined implicit and explicit
calculation

An important input parameter of the HCA model proposed by Niemu-
nis et al. (2005b) (Section 3.2) is the strain amplitude εampl. In order to
determine the spatial field of the strain amplitude the implicit parts of the
calculation are necessary. The first cycle may be irregular since the deforma-
tions in the first cycle can significantly differ from those in the subsequent
cycles. The second cycle is more representative for the elastic portion of
deformation during the subsequent regular cycles. Therefore, the strain
amplitude is determined from the second cycle. For that purpose the strain
path during the cycle is recorded in each integration point of the FE model.
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The strain amplitude is determined from the strain path according to the
procedure described by Niemunis et al. (2005b). During the explicit parts
of the calculation the strain amplitude is assumed to be constant. During
cyclic loading the spatial field of the strain amplitude may change due to
compaction or a re-distribution of stress. Therefore, the explicit calculation
should be interrupted after a certain number of cycles (e.g. at N = 10, 100,
1000, etc.) and a so-called control cycle should be calculated implicitly in
order to update the strain amplitude (Fig. 11b). The necessary number of
control cycles depends on the boundary value problem and on the material
under consideration.

Deficits (lack of generality, missing influencing parameters, 1D formula-
tion) of older HCA models proposed in the literature (Marr and Christian,
1981; Diyaljee and Raymond, 1982; Bouckovalas et al., 1984; Sawicki and
Świdziński, 1987, 1989; Kaggwa et al., 1991; Gotschol, 2002) have been dis-
cussed by Wichtmann (2005). The HCA model more recently proposed by
Abdelkrim et al. (2006) for ballast materials needs an experimental valida-
tion based on cyclic laboratory tests.

3.2 HCA Model Proposed by Niemunis et al. (2005b)

The basic constitutive equation of the HCA model proposed by Niemunis
et al. (2005b) reads

σ̇ = E : (ε̇− ε̇
acc − ε̇

pl) (6)

with the rate σ̇ of the effective stress σ (compression positive), the strain
rate ε̇ (compression positive), the given accumulation rate ε̇

acc, a plastic
strain rate ε̇

pl (for stress paths touching the yield surface, see Niemunis
et al., 2005b) and the pressure-dependent elastic stiffness E. In the context
of HCA models “rate” means a derivative with respect to the number of
cycles N , that means �̇ = ∂�/∂N . Depending on the boundary conditions,
the model predicts an accumulation of strain (ε̇ �= 0, pseudo-creep) and/or
a change of stress (σ̇ �= 0, pseudo-relaxation).

For ε̇acc in Eq. (6) the following expression is used:

ε̇
acc = ε̇acc m (7)

with the direction of strain accumulation m = ε̇
acc/‖ε̇acc‖ (flow rule, unit

tensor) and the intensity of strain accumulation ε̇acc = ‖ε̇acc‖. The flow
rule of the modified Cam clay (MCC) model

m =

[
1

3

(
p− q2

M2p

)
1+

3

M2
σ

∗

]→
(8)
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Table 1. Summary of the functions, material constants and reference quan-
tities of the HCA model

Influencing Function Mat. Reference
parameter const. quantities

Strain amplitude fampl = min

{(
εampl

ε
ampl
ref

)2

; 100

}
ε
ampl
ref = 10−4

Cyclic preloading ḟN = ḟA
N + ḟB

N CN1

ḟA
N = CN1CN2 exp

[
−

gA

CN1fampl

]
CN2

ḟB
N = CN1CN3 CN3

Mean pressure fp = exp
[
−Cp

(
pav

pref
− 1

)]
Cp pref = 100 kPa

Stress ratio fY = exp
(
CY Ȳ av) CY

Void ratio fe = (Ce−e)2

1+e

1+eref
(Ce−eref)

2 Ce eref = emax

is used for m since it approximates well the ratios ε̇accv /ε̇accq measured in
drained cyclic triaxial tests with ε̇v = ε̇1 + 2ε̇3 and ε̇q = 2/3(ε̇1 − ε̇3)
being the rates of volumetric or deviatoric strain accumulation, respectively.
The superposed arrow in Eq. (8) denotes Euclidean normalization. The
superposed star �∗ means the deviatoric part of � and p,q are Roscoe’s
invariants. For triaxial extension (η = q/p < 0) a small modification M =
F Mc is used with

F =

⎧⎨⎩ 1 +Me/3 for η ≤ Me

1 + η/3 for Me < η < 0
1 for η ≥ 0

(9)

wherein

Mc =
6 sinϕc

3− sinϕc
and Me = − 6 sinϕc

3 + sinϕc
. (10)

ϕc is the critical friction angle.
The intensity of strain accumulation ε̇acc in Eq. (7) is instead calculated

as a product of six functions:

ε̇acc = fampl ḟN fe fp fY fπ (11)

Each function (see Tab. 1) considers the influence of a different parameter.
The function fampl describes the proportionality between ε̇acc and the square



www.manaraa.com

14 T. Wichtmann and T. Triantafyllidis

of the strain amplitude (εampl)2. It is valid up to strain amplitudes εampl ≈
10−3. For larger strain amplitudes, the accumulation rate was observed to
be almost independent of εampl (Wichtmann, 2005). Therefore fampl = 100
is specified as an upper boundary in Tab. 1. The HCA model is primarily
devoted to small strain amplitudes εampl < 10−3.

The model incorporates a tensorial definition of the amplitude for mul-
tidimensional strain loops (Niemunis, 2003; Niemunis et al., 2005b). Its
scalar value εampl is determined from multiple projections of the original
six-dimensional strain loop. For the three-dimensional case these projec-
tions are shown in Fig. 12. In the case of uniaxial cycles the novel amplitude
definition is equal to the conventional one (i.e. �ampl = 1

2 (�max − �min)).
The treatment of more complex strain loops (Fig. 13) has been discussed
by Niemunis et al. (2007a).

R

r

(3)

R(2)

R(2)

R(1)

r  (2)

r  (2)

r  (1)

 (3)

projection of
strain loop
3D       2D 

projection of
strain loop
2D       1D 

Figure 12. Definition of a multiaxial amplitude: Multiple projections of
the 6-D strain path (Niemunis et al., 2005b)
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Figure 13. Strain loops generated by superposition of harmonic oscillations
(Niemunis et al., 2007a)

The increase in ε̇acc with decreasing average mean pressure pav at ηav
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= constant and with increasing average stress ratio ηav = qav/pav at pav

= constant is captured by the functions fp and fY , respectively. In the
function fY the stress ratio is described by the normalized quantity Ȳ av

instead of ηav, using the function Y of Matsuoka and Nakai (1982):

Ȳ =
Y − 9

Yc − 9
with Yc =

9− sin2 ϕc

1− sin2 ϕc

and (12)

Y = −I1I2
I3

=
27(3 + η)

(3 + 2η)(3− η)
(13)

The Ii in Eq. (13) are the basic invariants of the effective stress σ.
The function fe in Eq. (11) describes the increase in the rate ε̇acc with

increasing void ratio e. In the cyclic triaxial tests the curves εacc(N) of the
residual strain versus the number of cycles were found to run proportional
to the function fN :

fN = CN1 [ln(1 + CN2N) + CN3N ] . (14)

It consists of a logarithmic and a linear portion. The derivative with respect
to N is

ḟN =
CN1CN2

1 + CN2N︸ ︷︷ ︸
ḟA

N

+ CN1CN3︸ ︷︷ ︸
ḟB

N

(15)

It can be splitted into a N -dependent portion ḟA
N and a constant portion

ḟB
N . However, the number of cycles N alone is not a suitable state variable
for the quantification of cyclic preloading (historiotropy) since it contains no
information about the intensity of the cycles in the past. For that reason,
the preloading (historiotropic) variable gA was introduced into the HCA
model. It counts the cycles weighting them with their amplitude

gA =

∫
fampl ḟ

A
N dN (16)

Only the N -dependent portion of ḟN is considered for gA. The function
ḟA
N was re-formulated using gA instead of N (Tab. 1). The HCA model
with gA is able of predicting correctly the accumulation of strains due to
packages of cycles with different amplitudes applied in different sequences.
The model approximately obeys Miner’s rule (Miner, 1945) known from
fatigue mechanics of metals, that means the sequence of the packages of
cycles is of no importance, which is in accordance with the experimental
results presented in Section 3.3.
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The factor fπ considers that a change of the polarization of the cycles,
that means a change in the direction of the cyclic loading, leads to an
increase in the rate of accumulation. A detailed description of fπ has been
provided by Niemunis et al. (2005b). For cyclic triaxial tests with σ3 =
constant fπ = 1 holds.

For axisymmetric element tests it is convenient to rewrite Eq. (6) with
Roscoe’s invariants:[

ṗ
q̇

]
=

[
K 0
0 3G

] [
ε̇v − ε̇acc mv

ε̇q − ε̇acc mq

]
(17)

Omitting ε̇
pl in Eq. (6) is legitimate for homogeneous stress fields. The bulk

modulus K = E
3(1−2ν) and the shear modulus G = E

2(1+ν) are expected to be

pressure-dependent. The volumetric (mv) and the deviatoric (mq) portions
of the flow rule are:

[
mv

mq

]
=

1√
1

3

(
p− q2

M2p

)2

+ 6
( q

M2

)2
⎡⎢⎣ p− q2

M2p

2
q

M2

⎤⎥⎦ (18)

The determination of a set of material constants has been explained in
detail by Wichtmann et al. (2010a). Wichtmann et al. (2009) proposed a
simplified calibration procedure in which the parameters required in the
HCA model can be estimated based on granulometric or index properties.

3.3 Parameters Influencing the Rate of Strain Accumulation

Direction of Accumulation Luong (1982) was probably the first one
who observed, that it depends on the average stress if a sand shows a con-
tractive or a dilative behaviour under cyclic loading. He applied packages
of 20 cycles at different average deviatoric stresses qav (Fig. 14). Fig. 14b
shows the measured q-εv-loops. Below a certain value of qav the material
behaviour was contractive while it was dilative at larger average deviatoric
stresses. Luong defined a borderline in the p-q-plane (the so-called “char-
acteristic threshold (CT) line”) separating the contractive and the dilative
material behaviour. This borderline was found to be independent of the soil
density.

A second important study on the direction of accumulation was con-
ducted by Chang and Whitman (1988). In a series of cyclic triaxial tests on
medium coarse to coarse sand they varied the average stress ratio ηav while
the average mean pressure pav was kept constant. Four tests were performed
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Figure 14. Contractive or dilative behaviour of sand under cyclic loading in
dependence of the average stress: a) q-ε1-loops and b) q-εv-loops measured
by Luong (1982)

on loose and four other ones on dense samples. In Fig. 15a the residual vol-
umetric strain after 100 cycles is shown as a function of the average stress
ratio ηav = qav/pav. Independently of the density of the sand, the rate
of volumetric strain accumulation ε̇accv vanished at an average stress ratio
ηav equal to the critical one Mc(ϕc). For ηav < Mc(ϕc) a compaction and
for ηav > Mc(ϕc) a dilative material behaviour was observed. Chang and
Whitman (1988) assumed the CT-line of Luong (1982) to be identical with
the critical state line. They observed an increase in the ratio γacc/εaccv with
increasing ηav (Fig. 15b). For different sands they found a good approxima-
tion of the measured ratios εaccv /γacc by the flow rule of the modified Cam
Clay model ω = (Mc

2 − (ηav)2)/(2ηav). An influence of the average mean
pressure pav and of the amplitude ratio ζ = qampl/pav on the direction of
strain accumulation could not be detected. Also the influence of the number
of cycles was reported to be negligible. However, the maximum number of
cycles in the tests of Chang and Whitman (1988) was rather small (Nmax ≤
1,050).

Our own test results also demonstrate that the direction of accumula-
tion is mainly governed by the average stress ratio ηav = qav/pav. Fig. 16a
presents the εaccq -εaccv -strain paths in cyclic triaxial tests with different av-
erage stress ratios ηav (Wichtmann et al., 2006a). The average mean pres-
sure was pav = 200 kPa in all tests and all specimens were medium dense.
At an isotropic average stress (ηav = 0), a pure volumetric accumula-
tion (compaction) takes place, that means the rate of deviatoric strain
accumulation ε̇accq is almost zero. The deviatoric portion of accumula-
tion increases with increasing absolute value of the average stress ratio
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|ηav| = |qav/pav|. At an average stress lying on the critical state line in com-
pression (ηav = Mc(ϕc) = 1.25) or in extension (ηav = Me(ϕc) = −0.88),
a pure deviatoric strain accumulation is observed, that means the rate of
volumetric strain accumulation vanishes (ε̇accv = 0). While average stress
ratios in the range Me(ϕc) < ηav < Mc(ϕc) lead to compaction, a dila-
tive behaviour is observed in the overcritical regime (see e.g. the test with
ηav = 1.375). Fig. 16b presents the measured directions of accumulation
for all tested average stresses σ

av as unit vectors in the p-q-plane. Each
vector starts in the point of the average stress (pav,qav) and is inclined by
1/ω = εaccq /εaccv towards the p-axis. The different grayscales correspond to
different numbers of cycles. A slight increase in the volumetric portion of
accumulation with the number of cycles becomes visible as a rotation of the
vectors towards the positive p- or εaccv -axis. Possible causes are discussed by
Wichtmann et al. (2006a). The direction of strain accumulation was found
to be almost independent of the average mean pressure pav, of the strain
loop (span, shape, polarization, Fig. 17), the void ratio and the loading
frequency (Wichtmann et al., 2006a). It was also not affected by a static
preloading.

The cyclic flow rule m of the HCA model (Eq. (8)) approximates well
the measured ratios ε̇accv /ε̇accq for various ηav-values. m could be confirmed
for air-pluviated specimens of eight quartz sands with different mean grain
sizes in the range 0.15 mm ≤ d50 ≤ 4.4 mm and with different coefficients
of uniformity Cu = d60/d10 between 1.3 and 4.5 (Wichtmann et al., 2009).
Fig. 18 shows the data for six of these sands. The corresponding grain size
distribution curves are given in Fig. 33a.
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Figure 18. Direction of strain accumulation for six different sands tested by
Wichtmann et al. (2009) (see the grain size distribution curves in Fig. 33a)

Intensity of Accumulation It is well-known that the intensity of ac-
cumulation increases with increasing stress or strain amplitude. This is
evident for instance from the cyclic simple shear test results of Sawicki and
Świdziński (1987, 1989) reported in Fig. 19a or from the cyclic triaxial test
results of Marr and Christian (1981) of Fig. 19b. Similar results were ob-
tained by Youd (1972) and Silver and Seed (1971a,b).
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Figure 19. Increase of the residual strain with increasing strain or stress
amplitude a) in simple shear tests of Sawicki and Świdziński (1987, 1989)
and b) in cyclic triaxial tests of Marr and Christian (1981)
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Also the tests of Wichtmann et al. (2005a) showed an increase in the
rate ε̇acc of strain accumulation with increasing stress amplitude (Fig. 20a,
ε =

√
(ε1)2 + 2(ε3)2). If the residual strain εacc is plotted versus the square

of the strain amplitude (ε̄ampl)2 linear curves are obtained independently of
the number of cycles (Fig. 20b). Since in the stress-controlled tests the strain
amplitude εampl varies slightly with N , a mean value of the strain amplitude
was used on the abscissa in Fig. 20b (here and in the following a bar over a

quantity denotes that a mean value over N is used, i.e. �̄ = 1
N

∫ N

0
� dN).

The division of εacc by the void ratio function f̄e of the HCA model on
the ordinate considers slightly different initial void ratios e0 and different
compaction rates ė. The proportionality between ε̇acc and the square of the
strain amplitude (εampl)2 has been described by the function fampl (Tab. 1)
in the HCA model and holds up to εampl = 10−3 (Wichtmann, 2005). It
was confirmed for air-pluviated specimens of the eight different sands shown
in Fig. 33a. Fig. 21 shows data for six of these sands (Wichtmann et al.,
2009). The linear curves trough the origin correspond with ε̇acc ∼ (εampl)2.
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Figure 20. a) Accumulation curves εacc(N) in tests with different stress
amplitudes, b) Accumulated strain εacc divided by the void ratio function f̄e
and plotted versus the square of the strain amplitude (ε̄ampl)2 (Wichtmann
et al., 2005a)

The behaviour in tests with large shear strain amplitudes may deviate
from that described above. A schematic illustration of a simple shear test
result is drawn in Fig. 22a. While during the first cycles exclusively densifi-
cation takes place, an alternating contractive and dilative behaviour during
a cycle is observed at largerN -values (Gudehus, 2000; Pradhan et al., 1989).
In that case the frequency of volumetric deformation is doubled compared
with the applied shear loading.

Fig. 22b presents the results of cyclic triaxial tests with a simultaneous
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oscillation of the axial and the lateral stress (Wichtmann et al., 2007a).
Different polarizations of the cycles in the P -Q-plane were tested (described
by the angle αPQ = arctan(Q/P ) using the isomorphic stress invariants P =√
3p and Q =

√
2/3q). For each polarization tests with different amplitudes

were performed. In Fig. 22b the residual strain after 10,000 cycles is plotted
versus a mean value ε̄ampl of the strain amplitude. For a given ε̄ampl the
residual strain does not significantly depend on the polarization of the cycles
(as long as the polarization does not change, see below).

The shaking table tests of Pyke et al. (1975) (Fig. 23a) and the mul-
tidimensional simple shear tests of Wichtmann et al. (2007a) (Fig. 23b)
demonstrate the importance of the shape of the strain cycles. Circular strain
cycles produce almost twice larger accumulation rates than one-dimensional
cycles with the same maximum span. In the HCA model (Section 3.2) this
is captured by the tensorial amplitude definition.
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Figure 23. Large influence of the shape of the cycles observed a) in shaking
table tests of Pyke et al. (1975) and b) in multidimensional simple shear
tests of Wichtmann et al. (2007a)

It is well known that the rate of strain accumulation increases with
decreasing soil density, that means with increasing void ratio. This becomes
clear from the cyclic triaxial tests of Marr and Christian (1981) (Fig. 24a)
and also from our own test results (Wichtmann et al., 2005a) (Fig. 24b). In
Fig. 24b the residual strain εacc after different N -values has been divided by
the amplitude function fampl of the HCA model in order to consider slightly
different strain amplitudes and was plotted versus a mean value of the void
ratio ē. In the HCA model the increase of ε̇acc with increasing void ratio is
described by the function fe (Tab. 1).

In simple shear tests performed by Silver and Seed (1971a,b), Youd
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Figure 24. Increase of the rate of strain accumulation with increasing
void ratio: Cyclic triaxial tests of a) Marr and Christian (1981) and b)
Wichtmann et al. (2005a)

(1972) and Sawicki and Świdziński (1987, 1989) no influence of the ver-
tical stress on the accumulation of residual strain was observed (Fig. 25a).
In contrast to these studies, the more recent simple shear tests of Duku
et al. (2008) showed a significant decrease of the accumulation rate with
increasing vertical stress. This in good accordance with our results from
triaxial tests (Fig. 25b). The decrease of the intensity of accumulation with
increasing average mean pressure pav becomes more pronounced with in-
creasing number of cycles. It is described by the function fp in the HCA
model (Tab. 1). The σ1-independence observed in the early simple shear
test studies may be due to the low number of cycles applied or due to the
large strain amplitudes.

The data from cyclic triaxial tests with different average stress ratios
ηav are plotted in Fig. 26 (Wichtmann et al., 2005a). The normalized stress
ratio Ȳ av has been used on the x-axis. The accumulation rate increases
strongly with increasing average stress ratio. The function fY of the HCA
model (Tab. 1) describes this observation.

Most researchers found no influence of the loading frequency on the rate
of strain accumulation. As an example results from drained simple shear
tests of Youd (1972) with loading frequencies in the range 0.2 Hz ≤ f ≤
1.9 Hz are presented in Fig. 27a. Shenton (1978) also found no influence
of the loading frequency in drained cyclic triaxial tests on ballast with 0.1
Hz ≤ f ≤ 30 Hz. Our own test results are given in Fig. 27b. A similar
accumulation of strain was observed for loading frequencies between 0.05
and 2 Hz. Therefore, the loading frequency has not to be considered as an
influencing parameter in the HCA model.
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average stress ratio, cyclic triaxial tests of Wichtmann et al. (2005a)

The effect of changes of the polarization of the cycles was studied by
Wichtmann et al. (2007a) in multi-dimensional simple shear tests. 1,000 cy-
cles with a certain polarization were followed by 4,000 cycles with a perpen-
dicular polarization. Fig. 28a reveals that the sudden change of the polariza-
tion causes a temporary increase of the accumulation rate. A strong increase
of the rate of strain accumulation due to polarization changes was also ob-
served by Yamada and Ishihara (1982) in true triaxial tests (Fig. 28b). After
consolidation under an isotropic stress they applied four cycles. Keeping p
constant, in the first cycle the vertical stress was increased until a certain
octahedral shear stress τoct was reached. After that, the direction of loading
was rotated by a certain angle θ in the octahedral plane and the second cycle
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of Youd (1972) and b) in cyclic triaxial tests of Wichtmann et al. (2005a)

was applied with the same amplitude in this new direction. The third and
the fourth cycles had the same polarizations as the first and the second one
but the amplitude was larger. The residual strain increased significantly
with increasing value of θ. In the HCA model the effect of polarization
changes is described by the function fπ (Wichtmann et al., 2007a).
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Figure 28. Increase of the rate of strain accumulation due to a sudden
change of the polarization of the cycles: a) multidimensional simple shear
tests of Wichtmann et al. (2007a), b) true triaxial tests of Yamada and
Ishihara (1982)

Different shapes of the accumulation curves εacc(N) have been reported
in the literature. Some researchers (e.g. Lentz and Baladi, 1980; Duku
et al., 2008) found curves obeying εacc(N) ∼ ln(N) (Fig. 29a) whereas other
studies (e.g. Marr and Christian, 1981) suggest an increase of εacc faster than



www.manaraa.com

Behaviour of Gran. Soils Under Environ. Ind. Cyc. Loads 27

proportional to ln(N). Sometimes a power-law relationship εacc ∼ Na with
an exponent a is used. Fig. 29b presents the accumulation curves εacc(N)
measured by Wichtmann et al. (2005a) in different test series. The data was
divided by the functions f̄ampl, f̄e, fp, fY and fπ = 1 of the HCA model
(Tab. 1) in order to purify it from the influences of stress amplitude, initial
density, average mean pressure and average stress ratio. The purified data
fall together into a band which can be approximated by the function fN
defined in Eq. (14). It consists of a logarithmic and a linear portion. The
logarithmic portion is pre-dominant up to N = 104 while the linear portion
is necessary to describe the curves εacc(N) for larger numbers of cycles.
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Tests on the eight sands shown in Fig. 33a (Wichtmann et al., 2009)
revealed that the shape of the accumulation curves εacc(N) depends on the
grain size distribution curve, in particular on the coefficient of uniformity
Cu = d60/d10. Fig. 30 shows data for six of the sands. For the uniform
sands Nos. 1 to 6, the residual strain increases almost proportionally to
ln(N) up to N ≈ 104 and over-proportionally for larger N -values. For
the sands Nos. 7 and 8, having higher Cu-values, the residual strain grows
faster than according to εacc ∼ lnN already from the beginning of the test.
The differences between the curves εacc(N) reported by different researchers
may be due due to the different grain size distribution curves of the tested
materials.

The large influence of a cyclic preloading is illustrated in Fig. 31a. It
presents the evolution of void ratio e with the number of cycles N in three
cyclic triaxial tests with identical stresses but slightly different initial void
ratios e0. Considering a state with identical void ratio and identical stress
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Figure 30. Accumulation curves εacc(N) for six of the sands tested by
Wichtmann et al. (2009) (see the grain size distribution curves in Fig. 33a)

(as marked by the horizontal line in Fig. 31a) the compaction rate ė1 of a
freshly pluviated sample is significantly larger than the rate ė3 of a sam-
ple which was preloaded with 40,000 load cycles. Thus, the accumulation
rate is significantly reduced by a cyclic preloading. For a good prediction
with a HCA model the knowledge of void ratio and stress alone is not suf-
ficient. An information about the cyclic preloading of the soil is necessary.
Unfortunately, it cannot be directly measured in situ but has to be deter-
mined from correlations. Despite considerable efforts a clear correlation
of cyclic preloading with dynamic soil properties (e.g. P- and S-wave ve-
locities) could not be established (Wichtmann and Triantafyllidis, 2004a,b,
see Section 5.2). A correlation with the liquefaction resistance, however,
could be formulated (Wichtmann et al., 2005c, see Fig. 72) but its practical
application has still to be proven. A correlation of cyclic preloading with
acoustic emissions seems to be rather insufficient (Niemunis et al., 2007b).
As an alternative, the cyclic preloading could be determined by cyclic test
loadings in situ (some ideas are explained by Wichtmann, 2005).

In many practical problems the amplitude of the cycles is not constant
but varies from cycle to cycle. Such random cyclic loadings could be re-
placed by packages of cycles each with a constant amplitude (Fig. 31b) if
the sequence of application would not affect the residual strain, that means
if Miner’s rule (Miner, 1945) were applicable to soil. The test results of
Kaggwa et al. (1991) on calcareous sand (Fig. 32a) and our own test results
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(Fig. 32b) demonstrate that Miner’s rule can be assumed to be approxi-
mately valid for sand, at least for a constant polarization of the cycles. In
the six tests shown in Fig. 32b four packages each with 25,000 cycles were
applied in succession. The amplitudes qampl = 20, 40, 60 and 80 kPa were
applied in different sequences. Irrespectively of the chosen sequence the
residual strains at the end of the tests were quite similar.
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The influence of the grain size distribution curve on the rate of strain



www.manaraa.com

30 T. Wichtmann and T. Triantafyllidis

accumulation was studied byWichtmann et al. (2009) in approx. 200 drained
cyclic triaxial tests on the eight sands shown in Fig. 33a. It was found that
for a similar relative density the rate of strain accumulation decreases with
increasing mean grain size d50 and that it considerably grows with increasing
coefficient of uniformity Cu = d60/d10 (Fig. 33b).
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Figure 33. a) Eight grain size distribution curves tested by Wichtmann
et al. (2009), b) Residual strain after 105 cycles as a function of stress
amplitude for the eight tested sands (Wichtmann et al., 2009)

The functions fampl, fe, fp, fY and fN of the HCA model were found
useful for all of the eight tested sands. Wichtmann et al. (2009) formulated
correlations of the material constants of the HCA model with granulometric
properties (d50, Cu) or with index properties (emin). Some of them are
shown in Fig. 34. They may be used for a simplified determination of a set
of material constants.

Stiffness E of the HCA Model The elastic stiffness E used in the basic
constitutive equation (6) of the HCA model interrelates the rates of stress
and strain accumulation. The bulk modulus K can be experimentally ob-
tained from a comparison of the rate u̇ of pore pressure accumulation in
an undrained cyclic triaxial test and the rate ε̇v of volumetric strain accu-
mulation in a drained cyclic test. Both specimens should be prepared with
similar initial void ratios. The initial stress and the stress amplitude should
be the same in both tests. For isotropic stress conditions (q = 0, q̇ = 0, mq

= 0) Eq. (17) takes either the form of isotropic relaxation

ṗ = −K ε̇acc mv (19)
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under undrained conditions (ε̇v = 0) or the form of volumetric creep

ε̇v = ε̇acc mv (20)

under drained conditions (ṗ = 0). Comparing these equations one may
eliminate ε̇acc mv and obtain

K = − ṗ

ε̇v
or

u̇

ε̇v
(21)

For the determination of Poisson’s ratio ν the effective stress evolution (ṗ,q̇)
observed in a strain-controlled undrained cyclic triaxial test commenced at
an anisotropic initial stress may be compared with the prediction of Eq. (17).
For ε̇v = 0 and ε̇1 = 0 and therefore ε̇q = 0 one obtains:[

ṗ
q̇

]
=

[
K 0
0 3G

] [ −ε̇acc mv

−ε̇acc mq

]
(22)

The ratio of the relaxation rates

q̇

ṗ
=

3G

K

mq

mv
=

9(1− 2ν)

2(1 + ν)

2ηav

M2 − (ηav)2
(23)

depends on ν. Stress paths for different ν-values are plotted exemplary in
Fig. 37a. The stress relaxates until σ′ = 0 is reached. The Poisson’s ratio
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ν can be determined from the measured q̇/ṗ or judged by a curve-fitting of
the experimental data using Fig. 37a.

The pressure-dependent bulk modulus K was quantified from fifteen
pairs of drained and undrained cyclic tests on a medium coarse sand with
different consolidation pressures and stress amplitudes (Wichtmann et al.,
2010b). Some of the curves u(N) of pore water pressure versus the num-
ber of cycles measured in the undrained cyclic tests are given in Fig. 35a.
The corresponding curves εaccv (N) of volumetric strain accumulation in the
drained tests are shown in Fig. 35b.
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Membrane penetration effects in the undrained tests were considered by
applying the correction method proposed by Tokimatsu (1990) (see Section
4). During an undrained cyclic test with qampl = constant the average mean
pressure decreases and the strain amplitude εampl increases considerably. In
the drained test pav is constant and the strain amplitude does not change
much, but the void ratio e decreases with N . In order to evaluate u̇ and
ε̇accv for exactly the same test conditions that means same values of εampl, e,
pav and gA, the rate ε̇accv from the drained tests was corrected as described
by Wichtmann et al. (2010b). Fig. 36 presents the bulk modulus K versus
average mean pressure pav. The data from all 15 pairs of tests fall into a
concentrated cloud of points. The obvious pressure-dependence of K can
be approximated by

K = A p1−n
atm pn (24)

with A = 467 and n = 0.46 (the fat solid line in Fig. 36). Wichtmann et al.
(2010b) demonstrated that for a simplified determination procedure, K can
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be estimated from the un- and reloading curve of an oedometric compression
test (Fig. 36). A quite similar relationship K(p) was found in a more recent
test series on a uniform fine sand (Wichtmann et al., 2010c).
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A typical effective stress path in an undrained cyclic triaxial test with
a constant strain amplitude εampl

1 = 6 · 10−4 commenced at an anisotropic
initial stress is shown in Fig. 37b. The effective stress relaxates until σ′ = 0
is reached. Plotting the course of the average effective stress (the stress after
each cycle, that means at ε1 = 0), the diagrams in Fig. 38 were obtained.
No influence of the strain amplitude (Fig. 38a) and of the void ratio on
the curves qav(pav) could be detected (Wichtmann et al., 2010c) within the
studied range εampl- and e-values. Fig. 38b shows the paths for different
initial mean pressures p0 while the initial stress ratio η0 was kept constant.
Paths for different initial stress ratios η0 and for p0 = 200 kPa are plotted
in Fig. 38c.

For low to intermediate initial stress ratios -0.75 ≤ η0 ≤ 0.75 Poisson’s
ratio is approximately 0.30 while larger ν-values are necessary in order to
reproduce the measured stress paths for larger stress ratios in triaxial com-
pression (η0 = 1.0). The test results reveal that for large values of η an
isotropic elastic stiffness E may not be sufficient. However, in order to keep
the HCA model as simple as possible, at present the use of an isotropic
elasticity with K(p) from Eq. (24) and with ν = 0.30 is recommended.

3.4 Applications of the HCA Model

Recalculation of Element Tests The HCA model was used to recalcu-
late the element tests documented by Wichtmann et al. (2005a). The quite
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good agreement between the test results and the curves predicted by the
HCA model is shown in Fig. 39 for the test series with different average
stress ratios. The HCA model also predicts quite well the accumulation of
strain in cyclic triaxial tests with packages of cycles with different ampli-
tudes applied in different sequences (Fig. 40). The recalculation of drained
and undrained cyclic tests performed for the determination of the bulk mod-
ulus K is given in Fig. 35. The HCA model with a single set of constants in
combination with the bulk modulus calculated from Eq. (24) with A = 467
and n = 0.46 describes well both, the accumulation of pore water pressure in
undrained cyclic tests and the accumulation of volumetric strain in drained
cyclic tests. Recalculations of other test series are presented by Wichtmann
(2005).
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Foundations with Cyclic Loading In order to confirm the prediction
of the HCA model for boundary value problems a centrifuge model test of
Helm et al. (2000) was re-calculated using the finite element method. In the
model test (acceleration level 30g) a strip foundation was placed without
embedding on a freshly pluviated dense fine sand and afterwards loaded
with N = 105 stress cycles. The dimensions in the prototype scale and
the loading are given in Figure 41a. In order to re-calculate the model
test, the material constants of the fine sand used in the centrifuge test were
determined (Wichtmann, 2005). Fig. 41a presents the FE discretisation.
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Fig. 41b compares the settlement curves s(N) measured in the model test
and obtained from the FE calculation. A good congruence of the curves can
be observed. Therefore, the HCA model was confirmed to deliver realistic
settlement predictions.

Parametric studies of strip foundations under cyclic loading were per-
formed by Wichtmann et al. (2005b). The variables of the soil (initial
density ID0, coefficient of lateral earth pressure K0 = σh/σv, historiotropic
variable gA0 ), the loading of the foundation (average value σav, amplitude
σampl) and the geometry of the foundation (depth t of embedding, width
b) were varied. Two examples showing the increase of the settlement with
increasing number of cycles are presented in Fig. 42. They demonstrate that
the settlement grows with increasing load amplitude and with decreasing
depth of embedding.

Niemunis et al. (2005a) calculated the differential settlements of two
neighboured foundations. The spatial distribution of the void ratio e(x)
was stochastically generated with three different correlation lengths. 30 dif-
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ferent fields e(x) (see an example in Fig. 43a) were tested. Let sl and sr be
the settlements of the left and the right foundation, respectively (Fig. 43a).
The differential settlement Δs = |sl − sr| was divided by the mean value
s̄ = (sl + sr)/2. The ratio (Δs/s̄)stat due to static loading up to σav was
compared to the ratio (Δs/s̄)cyc describing the additional differential set-
tlement accumulated during the subsequent 105 cycles. Independently of
the correlation length the differential settlement (Δs/s̄)cyc resulting from
cyclic loading was observed to be approximately three times larger than
(Δs/s̄)stat caused by static loading (Fig. 43b).
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Figure 43. Differential settlement of two neighbored shallow foundations
on a soil with a stochastically distributed void ratio (Niemunis et al., 2005a)

Calculations of a statically indeterminate frame structure on a soil with
a stochastically fluctuating void ratio have been presented by Wichtmann
et al. (2007b) (Fig. 44). A positive feedback effect between the settlement
and the settlement rate could be demonstrated. A stress relaxation takes
place under the middle foundation where the soil is relatively loose com-
pared to the soil below the outer foundations. While the contact normal
force under the middle column significantly decreases withN it consequently
increases under the outer columns (Fig. 44). For N > 104 even tension
forces occur in the middle column which are carried by friction. The mid-
dle foundation loses its function resulting in large bending moments in the
structure. The rate of stress relaxation significantly increases after each
control cycle because the strain amplitudes in the soil do so. This is due
to a decrease of the effective stress while the load amplitudes do not sig-
nificantly change with N . An additional acceleration of accumulation may
be due to an increase of ε̇acc with decreasing pav (function fp in the HCA
model).
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Figure 44. Settlement and re-distribution of forces in a statically indeter-
minate structure on an inhomogeneous soil (Wichtmann et al., 2007b)

Fig. 45 presents a study of the long-term deformations of a monopile
foundation of an offshore wind power plant (Wichtmann et al., 2008). Since
an uni-directional cyclic loading was studied the symmetry of the system
could be utilized for the FE discretisation (Fig. 45a). Fig. 45b shows the
lateral deflection of the pile as a function of depth after 106 cycles. As
expected the permanent tilting of the monopile foundation increases with
increasing amplitude of the applied torsional moment.

Geogrid-reinforced soil structures under cyclic loading were studied by
Arwanitaki and Triantafyllidis (2006) (Fig. 46a). In particular, a geogrid-
reinforced embankment on piles in soft ground was investigated. In such
systems the vertical loads are conducted into the piles via stress arches de-
veloping in the base layer. The cyclic loading was applied on the soil surface
simulating a traffic loading. Arwanitaki and Triantafyllidis (2006) demon-
strated that the cyclic loading leads to a weakening of the stress arches
causing large settlements. A reduction of the accumulated settlements with
increasing number of geogrid layers was observed (Fig. 46b).
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4 Pore Water Pressure Accumulation, Liquefaction
and Nonlinear Phenomena Due to Undrained Cyclic
Loading

4.1 Introduction

As is well known, an earthquake event causes the propagation of body and
surface waves, but these latter are of secondary importance in relation to
the problem of soil liquefaction (Ishihara, 1995). The body waves may be
distinguished in compression (primary, P-) waves and shear (secondary, S-)
waves. Due to the decrease in the soil stiffness with decreasing depth, the
body waves propagate almost vertically near the ground surface (Towhata
(2008), Fig. 47).

ground surface

E2 > E1

E1

E3 > E2

E4 > E3

E5 > E4

wave
propagation

diffraction of S-waves
due to lower stiffness

Figure 47. Nearly vertical propagation of body waves near the ground
surface due to pressure-dependent soil stiffness

If a P-wave passes an element of saturated soil the total vertical stress σv

and the total horizontal stress σh change by almost the same amount, that
means σampl

v ≈ σampl
h and therefore qampl = σampl

v − σampl
h ≈ 0 (Ishihara,

1995, Fig. 48). This almost isotropic increase in to the total stress results in
an increase in the pore water pressure of the same magnitude but does not
change the effective stresses σ′

v = σv−u or σ′

h = σh−u, respectively. There-
fore, the P-wave is usually not considered when estimating the liquefaction
risk of an in-situ soil deposit.

On the contrary, soil liquefaction may be caused by shear waves. Fig. 2b
shows the stresses acting on an element of soil before and during the tran-
sition of a shear wave. The shear wave causes cyclic shear stresses with
an irregular time history τ(t). Due to the relatively fast application of
the cyclic shearing partly drained or nearly undrained conditions can be
assumed. Instead of the soil compaction that would have been observed
during a drained cyclic shearing, the pore water pressure accumulates with
each cycle.

The increase in pore water pressure u is accompanied by a reduction
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in the effective stresses σ′

v and σ′

h. Consequently, the stiffness and the
shear strength of the soil are reduced. In the extreme case, the pore water
pressure reaches the total vertical stress σv. In this case, also the effective
lateral stress vanishes so that σ′

v = σ′

h = 0 (Fig. 49). At that time, most
of the contacts among adjacent grains have got lost. The soil behaves like
a suspension composed of water and grains without any shear strength.
Therefore, the soil is said to have “liquified”. A soil liquefaction can result
into a loss of the bearing capacity of foundations, in failure of slopes or
in an uplift of underground structures like tanks or sewers (Ishihara, 1995;
Towhata, 2008).
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Figure 49. Change of total and effective stress components due to the
build-up of excess pore water pressure

Different types of laboratory tests may be used to study the liquefaction
susceptibility of a soil. The undrained cyclic simple shear test most closely
reproduces the in-situ conditions during a cyclic shearing caused by a shear
wave. However, the stress and strain fields may be inhomogeneous. The
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undrained cyclic triaxial test with an isotropic consolidation of the specimen
and with symmetrical cycles applied in the vertical direction is frequently
used. Sometimes the specimens are also consolidated anisotropically. The
suitability of the undrained cyclic triaxial test has been demonstrated by
Seed and Lee (1966). For level ground, Ishihara (1995) recommends the
torsional shear test with an anisotropic consolidation and with a prevention
of lateral strains (Fig. 50a). In that test the total lateral stress is increased
to maintain ε3 = 0. For a sloping ground Ishihara (1995) prefers a torsional
shear test with anisotropic consolidation and with no constraints for the
lateral strain (ε3 �= 0, Fig. 50b). The undrained cyclic triaxial test with
an anisotropic consolidation and with an oscillation of the axial stress is
considered to be equivalent (Ishihara, 1995).

σh
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a) Level ground
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'

In situ Laboratory In situ Laboratory

Figure 50. Appropriate laboratory tests to reproduce the behaviour of an
element of soil below level or sloping ground (Ishihara, 1995)

Typical effective stress paths during undrained monotonic triaxial tests
on air-pluviated specimens are shown in Fig. 51. A reduction in the effec-
tive mean stress p′ corresponds with a contractive soil behaviour while an
increase is equivalent to dilatancy. For a certain initial pressure, the shape
of the effective stress paths mainly depends on density. A loose sand (curve
A) shows a contractive behaviour. When the deviatoric stress q has passed
a maximum it decreases until a “steady state (SS)” is reached. Then the
effective stress does not change any more although the shearing is continued.

In the case of a medium dense sand (curve B) the deviatoric stress first
increases until a local maximum is reached. Afterwards it decreases up to a
local minimum (so-called “quasi steady state (QSS)”). Up to this point the
behaviour is contractive, that means p′ decreases. If the shearing is contin-
ued the material behaviour changes from contractive to dilative (so-called
“phase transformation”, PT). The subsequent increase in p′ is accompanied
by an increase in the deviatoric stress. During this last phase of the test
the effective stress path in the p’-q-plane follows an almost linear curve.
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Figure 51. Effective stress paths in the p′-q-plane typically measured in
undrained monotonic triaxial tests on loose, medium dense and dense sand
samples (Vaid et al., 1981)

The curve C for dense sand is similar to curve B for medium coarse
sand with the only exception that the deviatoric stress continuously in-
creases during the test. The transition from the contractive to the dilative
behaviour is similar for curves B and C. A QSS is not observed for dense
sand. If the elbow points of the stress paths B and C are connected they
lay on the same linear curve through the origin (PT line). The QSS is a
special case of a PT.

For practical engineering problems the minimum values of the undrained
shear strength are of main interest, that means the SS value for loose sand
and the QSS value for medium dense sand (Vaid and Sivathayalan, 2000).
The SS state which a medium coarse sand reaches after considerable shear
deformations (qSS > qQSS) is of little practical interest (Vaid and Sivathay-
alan, 2000).

Fig. 52 presents own undrained monotonic triaxial tests performed on
a fine sand (Wichtmann et al., 2010c). Triaxial compression and extension
tests were performed with different initial mean pressures p′0 (Fig. 52a) and
with different initial densities ID0 (Fig. 52b). The shape of the measured
effective stress paths agrees well with the curves shown in Fig. 51. The
behaviour of soil subjected to an undrained monotonic loading and the most
important influencing parameters are discussed in more detail in Section 4.2.

The principle behaviour of a non-cohesive soil subjected to an undrained
cyclic loading is explained in Figs. 53 and 54 by means of a cyclic triaxial
test performed on a fine sand (Wichtmann et al., 2010c). The medium
dense specimen was prepared by air pluviation and consolidated under an
isotropic effective stress of σ′

1 = σ′

3 = 300 kPa using a back pressure of 200
kPa. The cycles were applied with an amplitude of qampl = 75 kPa. Fig. 53a
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Figure 52. Undrained monotonic triaxial tests on a fine sand (Wichtmann
et al., 2010c) with a) different initial pressures p′0 and b) different initial
densities ID0

shows the increase in the pore water pressure with each cycle. After approx.
90,000 seconds the pore water pressure u reached the total lateral stress σ3

for the first time, that means σ′

3 = 0 holds. This state of a test is usually
referred to as “initial liquefaction”. A phase of “cyclic mobility” followed:
this is characterized by a pore water pressure reaching condition u = σ3

twice within a cycle, passing two minima of different magnitude. When
the effective stress components within a cycle temporarily become zero, one
speaks of a “partial liquefaction”.
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Figure 53. Development of a) total and effective stress components and b)
of axial strain with time in an undrained cyclic triaxial test on a fine sand
(Wichtmann et al., 2010c)

While the amplitude of axial strain εampl
1 remained small during the first

cycles, it considerably increased after the initial liquefaction (Fig. 53b).
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Afterwards εampl
1 increased with each subsequent cycle. The specimen is

usually said to be “fully liquefied” or failed when a certain value of the
axial strain amplitude is reached. Different limiting value (e.g. 2εampl

1 = 2,
5 or 10 %) are used in the literature. The choice of a failure criterion will
depend on the tested material and on the type of foundation which has to
be designed avoiding liquefaction. Due to the different strength in triaxial
compression and extension symmetrical q-cycles around the p-axis usually
cause a failure on the extension side. In the test shown in Fig. 53b the
“initial” and the “full liquefaction” lay close to each other which is typical
for loose or medium dense clean sand.

The deviatoric stress q is plotted versus the axial strain ε1 in Fig. 54a.
Before initial liquefaction the stress-strain-hystereses are narrow and nearly
linear. After initial liquefaction the curves run parallel to the ε1 = 0-axis
over a wide range of strain, implying that the soil does not mobilize any
shear resistance. Once both a certain axial strain is reached and the pore
water pressure drops due to dilatancy, a shear resistance is regained. The
length of these phases without a considerable shear strength increases at
increasing numbers of cycles.
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Figure 54. a) q-ε1-hystereses and b) effective stress path in the p-q-plane
in an undrained cyclic triaxial test on a fine sand (Wichtmann et al., 2010c)

Fig. 54b shows the effective stress path in the p′-q-plane. Due to the
increase in the pore water pressure and the accompanying decrease in the
effective mean pressure p′ associated with the increase in the number of
cycles, the stress path shifts to the left. During the phase of cyclic mobility
the stress path takes a butterfly-like shape.

Usually several such tests with different stress amplitudes are conducted
for a given material. The number of cycles to liquefaction decreases with
increasing amplitude. A common representation of the test results is given in
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Fig. 55. The amplitude qampl or the “cyclic stress ratio” CSR = qampl/(2p′0)
with the initial effective mean pressure p′0 is plotted versus the number
of cycles necessary to reach initial liquefaction or a predetermined failure
criterion. For torsional shear tests CSR = τampl/p′0 and for simple shear
tests CSR = τampl/σ′

1,0 are often used on the ordinate of diagrams similar
to that shown in Fig. 55. The amplitude-pressure ratio fulfilling a given
failure criterion (e.g. 2εampl

1 = 2, 5 oder 10 %) in a certain number of cycles
(usually N = 10, 15 or 20) is termed “undrained cyclic strength”. It can be
read off from a diagram as that shown in Fig. 55.
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Figure 55. Stress amplitude qampl or “cyclic stress ratio” qampl/(2p′0) ver-

sus number of cycles to failure (here defined at 2εampl
1 = 10%), results of

undrained cyclic triaxial tests on a medium coarse sand (Wichtmann et al.,
2005c)

With respect to an undrained cyclic loading, Vaid and Chern (1985) (see
also Vaid and Sivathayalan, 2000 and Robertson et al., 1992) distinguished
three different cases depending on soil density. A specimen looser than
critical will show a behaviour as illustrated in Fig. 56a. After a few cycles
a “steady state” is reached: the final stage of the test is similar to a test
with an undrained monotonic loading on loose sand specimens. The type
of failure is denoted as “flow liquefaction”. A sand with the critical void
ratio will show a “limited liquefaction” (Fig. 56b). After some cycles the
stress path passes a “quasi-steady state” during which large deformations
are generated. The test ends with a phase of cyclic mobility. If the soil
is denser than critical (Fig. 56c) stress paths as those already shown in
Fig. 54b are observed.
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Figure 56. Schematic illustration of typical curves q(ε1) (Vaid and Si-
vathayalan, 2000) and q(p) in cyclic triaxial tests on a) very loose, b) loose
and c) medium dense or dense sand

4.2 Parameters Affecting Soil Response to Undrained Cyclic Load-
ing

It has been already shown in Fig. 55 that an increase in the stress ampli-
tude causes a decrease in the number of cycles necessary to reach a certain
failure criterion. The faster accumulation of pore water pressure with in-
creasing shear strain amplitudes becomes also obvious from the results of
displacement-controlled undrained cyclic triaxial tests performed by Dobry
et al. (1982). In Fig. 57a the ratio Δu/σ′

30 of the excess pore water pres-
sure and the initial effective lateral stress is plotted versus the shear strain
amplitude. No build-up of excess pore water pressure was observed below a
certain threshold amplitude which was approximately γtv = 10−4, indepen-
dently of the method of sample preparation, of the effective consolidation
pressure p′0 and of the type of sand (Fig. 57b). However, if a larger number
of cycles had been applied, a moderate accumulation of pore water pres-
sure would probably have been observed also for amplitudes γampl < 10−4

(compare Fig. 20a).
One of the most important influencing parameters regarding the accu-

mulation in pore water pressure under undrained conditions is the density
of the soil. This has been clearly demonstrated by the pioneer work of Seed
and Lee (1966) and Lee and Seed (1967). For a certain stress amplitude, a
much larger number of cycles is necessary to cause a liquefaction in a dense
sand compared to a loose one (Fig. 58). That means that at increasing
soil densities curves CSR(N) are shifted upwards and to the right. The
differences between the curves CSR(N) for the different densities are even
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Figure 57. Simple shear tests with different shear strain amplitudes (Dobry
et al., 1982)

more pronounced for a failure criterion εampl
1 = 20 % (Fig. 58b) than for

the initial liquefaction (Fig. 58a). This is due to the fact, that after initial
liquefaction the increase in the strain amplitude with each subsequent cycle
is much smaller in the case of a dense sand than for a loose one (Fig. 59).
While for a loose sand the initial and the full liquefaction lay close to each
other, a considerable number of cycles may lay between them for a dense
sand.
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Figure 58. Influence of void ratio on the number of cycles to a) initial

liquefaction and b) a strain amplitude εampl
1 = 20%, undrained cyclic triaxial

tests of Lee and Seed (1967)

Another example for the increase in the liquefaction resistance with in-
creasing density are the test results of Mori et al. (1978) in Fig. 60a. Tat-
suoka et al. (1986b) found a linear relationship between the liquefaction
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Figure 59. Development of axial strain with time in undrained cyclic tri-
axial tests on a) loose and b) dense sand (Lee and Seed, 1967)

resistance and the relative density up to Dr ≈ 75 % (Fig. 60b). For larger
relative densities the cyclic stress ratio causing liquefaction increases over-
linear with Dr.
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Figure 60. Increase of the liquefaction resistance with increasing density:
tests of a) Mori et al. (1978) and b) Tatsuoka et al. (1986b)

Lee and Seed (1967) demonstrated that the influence of the initial ef-
fective mean pressure p′0 is nearly eliminated if data are plotted using the
amplitude-pressure ratio qampl/(2p′0) (lower row of diagrams in Fig. 61) on
the ordinate instead of the stress amplitude qampl (upper row of diagrams in
Fig. 61). A slight decrease in the curves CSR(N) with increasing pressure
may be concluded from the diagram for Dr = 100 % in Fig. 61. Such a de-
crease has been also reported by other researchers. Ishihara (1995) collected
the data of Seed and Harder (1990), Kokusho et al. (1983), Frydman et al.
(1980) and Vaid and Thomas (1994) and proposed a pressure-dependent
correction factor Kσ(p

′

0) (solid line in Fig. 62) with which the liquefaction
resistance measured for a pressure p′0 = 100 kPa can be reduced for larger
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pressures. Ishihara (1995) stated that Kσ strongly depends on the type
of soil. Furthermore, Vaid and Thomas (1995) demonstrated that Kσ also
depends on density. For loose specimens Kσ ≈ 1 was observed almost inde-
pendent of p′0.

In displacement-controlled undrained cyclic triaxial tests Dobry et al.
(1982) found a decrease in the rate of pore water pressure accumulation
with increasing initial effective mean pressure p′0. These observations are in
good accordance with our results from drained cyclic tests (Fig. 25b).
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Figure 61. The use of an amplitude-pressure ratio qampl/(2p′0) on the ordi-
nate purifies the data from the influence of the initial effective mean pressure
p′0 (Lee and Seed, 1967)

Ishihara (1995) studied the effect of the lateral pressure coefficient K0

in undrained torsional shear tests. Three different values of K0 (0.5, 1.0
and 1.5) were tested. The total lateral stress was increased after each cycle
in order to keep the lateral strain zero (ε3 = 0). Therefore, with increas-
ing number of cycles the stress approached an isotropic state. While a
large influence of K0 can be observed if the data are plotted with the ratio
τampl/σ′

10 on the ordinate (Fig. 63a), the curves for the different K0-values
fall together if the ratio τampl/p′0 with the initial effective mean effective
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p′0 (Ishihara, 1995)

pressure p′0 = (1 + 2K0)σ
′

10/3 is used (Fig. 63b). Therefore, the coefficient
K0 does not influence the liquefaction resistance as long as the data are
analyzed in terms of p′0 instead of σ′

1,0. It seems justified to replace an
anisotropic in-situ stress state by an isotropic one in the cyclic triaxial test
as long as the initial effective mean pressure is the same.
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1,0 (Ishihara, 1995)

A static shear stress τav has to be considered for example in the case of
sloping ground or below the edges of foundations. The static shear stress
can be considered in simple shear or torsional shear tests in which the cycles
are applied around an average (static) value. Cyclic triaxial tests with a
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consolidation under anisotropic stress conditions are an alternative.
Hyodo et al. (1994) performed cyclic triaxial tests with an anisotropic

consolidation at different values of qav. They found an increase in the lique-
faction resistance with increasing average deviatoric stress for qav ≤ 40 kPa
(Fig. 64a). When qav was further increased, a significant reduction in the
liquefaction resistance was observed. In many of the tests of Hyodo et al.
(1994) large permanent axial strains developed (called “flow” deformation
by Hyodo et al., 1994) accompanied by a more or less sudden increase in
the pore water pressure (Fig. 65). Hyodo et al. (1994) assumed that the
flow occurs when the effective stress path in the cyclic tests reaches a line in
the p′-q-plane which is often referred to as the “instability line” (IL) in the
literature. This line passes through the local maxima of the effective stress
paths observed in undrained monotonic tests on medium dense specimens
(Fig. 64b). However, not all of the stress paths measured in the cyclic tests
of Hyodo et al. (1994) can be explained by this theory.
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Figure 64. a) CSR(N)-diagram from cyclic triaxial tests with anisotropic
consolidation stresses (Hyodo et al., 1994), b) Comparison of effective stress
paths in undrained monotonic and cyclic triaxial tests (Hyodo et al., 1994)

Simple shear tests of Vaid and Finn (1979) showed that the effect of a
static shear stress depends on the chosen failure criterion. Fig. 66a presents
the cyclic stress ratio causing a certain shear strain amplitude γampl = 2,
5 or 10 % in 10 cycles as a function of the static stress ratio α = τav/σ′

1,0.
With increasing α a lower cyclic stress ratio is necessary to cause a shear
strain amplitude γampl = 2 %, but a larger amplitude is needed for γampl =
5 and 10 %. Considering a constant shear stress amplitude, with increasing
static shear stress a lower number of cycles is necessary to reach γampl = 2
% but a larger one is needed for the larger shear strain amplitudes.

The undrained cyclic triaxial tests of Rollins and Seed (1990) revealed
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Figure 66. Influence of a static initial shear stress on the liquefaction
resistance depends on a) the chosen failure criterion (Vaid and Finn, 1979)
and b) on soil density (Rollins and Seed, 1990)

that the effect of a static shear stress depends on density. The correction
factor Kα in Fig. 66b is defined as the cyclic stress ratio causing failure
(2εampl

1 = 5 %) for a certain static shear stress τav divided by the cyclic stress
ratio causing failure at τav = 0. For loose soil (Dr = 35 %), the liquefaction
resistance decreases with increasing static stress ratio α = τav/p′0. For Dr =
45 % there is almost no influence of τav and for Dr = 55 % the liquefaction
resistance increases with α. Kα-values for other relative densities can be
interpolated. A similar density-dependence of Kα was found by Stedman
(1997) (see also Vaid and Sivathayalan, 2000). Ishihara (1995) and Vaid and
Sivathayalan (2000) stated that the correction factors Kα shown in Figure
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66b can be regarded as conservative, especially for loose sands.
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Figure 67. Influence of a static initial shear stress on the liquefaction
resistance depends on initial mean effective stress p′0 (Vaid and Chern, 1985)

The tests of Vaid and Chern (1985) on dense sand (Fig. 67) demonstrate
furthermore, that the influence of a static shear stress also depends on the
effective consolidation pressure p′0. Based on the data in Fig. 67 Vaid and
Sivathayalan (2000) concluded that the influence of p′0 (correction factor
Kσ, see Fig. 62) and the influence of τav (correction factor Kα) cannot
be treated independently of each other. A reduction in the liquefaction
resistance by the product Kα ·Kσ would drastically underestimate the liq-
uefaction resistance, in particular for loose sands. For a certain sand Vaid
and Sivathayalan (2000) recommended to study the combined influence of
p′0 and τav in laboratory tests.

Several studies in the literature show that the loading frequency does not
influence the liquefaction resistance measured in laboratory tests on clean
sand. In the undrained cyclic triaxial tests of Yasuda and Soga (1984) the
same liquefaction resistance was measured for different loading frequencies
between 0.05 and 1 Hz (Fig. 68a). In the regime of higher loading frequen-
cies (1 ≤ f ≤ 12 Hz) Yoshimi and Oh-Oka (1975) could also not detect
any frequency-influence in their undrained cyclic torsional ring shear tests
(Fig. 68b). Similar conclusions were drawn by Wong et al. (1975), Tatsuoka
et al. (1986a) and Kokusho et al. (2004).

The fabric of the grain skeleton in situ (orientation of the grains and
of the grain contacts, etc.) depends on the depositional and on the de-
formation history of the soil. In the laboratory different initial fabrics
can be obtained by different specimen preparation methods. Several re-
searchers (Ladd, 1974, 1977; Park and Silver, 1975; Tatsuoka et al., 1986b;
Porcino et al., 2004) observed a large influence of the preparation method
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and Oh-Oka (1975) with 1 Hz ≤ f ≤ 12 Hz

on the liquefaction resistance of sand specimens. Exemplary, the results of
Mulilis et al. (1975, 1977) are shown in Fig. 69. Although all specimens
were prepared with the same relative density of Dr = 50 %, the different
specimen preparation methods lead to significant differences in the lique-
faction resistance. Specimens prepared in the moist condition tended to be
characterized by a higher liquefaction resistance than those prepared dry.
Specimens which were compacted after preparation (by vibration, tamping
or rodding) showed a higher liquefaction resistance than specimens directly
prepared with Dr = 50 %. Water pluviation tended to produce a slightly
higher resistance than air pluviation. Most studies in the literature agree
that air pluviation leads to the lowest liquefaction resistance. However,
the literature is somewhat ambiguous concerning the effect of preparation
methods working with moist material (Towhata, 2008). In principle, the
method of sample preparation in the laboratory should reflect the deposi-
tional history of the soil in situ. Dobry and Ladd (1980) showed that the
influence of the method of specimen preparation may be disregarded when
the data are analyzed in terms of the strain amplitude instead of the stress
amplitude (Fig. 57b).

Many authors (Mulilis et al., 1975, 1977; Peck, 1979; Tokimatsu and
Hosaka, 1986; Hatanaka et al., 1988; Seki et al., 1992; Porcino et al., 2004)
reported about a significantly larger liquefaction resistance of high-quality
undisturbed specimens than of specimens of the same disturbed material
but reconstituted in the laboratory. The increased liquefaction resistance
is probably due to aging or cyclic preloading effects (discussed later in this
section). Therefore, testing of reconstituted samples may significantly un-
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Figure 69. Large influence of the specimen preparation method on the
liquefaction resistance, data of Mulilis et al. (1975)

derestimate the liquefaction resistance of an in-situ soil deposit as long as
the specimen preparation method does not reproduce the in-situ fabric of
the soil. High-quality undisturbed specimens can be obtained for example
by the ground freezing technique. Such undisturbed samples have to be
handled very carefully since the slight fabric effects can easily be destroyed
(Seed, 1979).

As an example test results of Yoshimi et al. (1984, 1989) are shown in
Fig. 70. They used the ground freezing technique to take undisturbed sam-
ples from a natural sand deposit in Niigata. For comparison purposes, an
artificial sand deposit (4 m × 6 m × 5 m) was prepared by water pluvia-
tion. Specimens were taken by ground freezing also from this deposit. The
undrained cyclic triaxial tests revealed a significantly higher liquefaction
resistance of the specimens taken from the natural sand layer compared to
those from the artificial deposit. This may be taken as a hint that samples
obtained by the ground freezing technique preserve their in-situ fabric of
the grain skeleton. Other test series in the literature (Vaid et al., 1999;
Ghionna and Porcino, 2006), however, found a similar liquefaction resis-
tance for undisturbed samples taken by ground freezing and reconstituted
samples prepared by water pluviation. These results support the thesis
that ground freezing does not preserve the in-situ fabric. The contradictory
results may be due to a different handling of the frozen specimens in the
laboratory. A thawing under reduced effective in-situ stresses (Vaid et al.,
1996; Vaid and Sivathayalan, 2000; Hydro, 1993; Singh et al., 1982) seems to
be advantageous compared to a thawing under full in-situ stresses (Hofmann
et al., 1995; Konrad and Pouliet, 1997). The latter method may lead to a
disuniform stress distribution, to changes of the void ratio and thus to fab-
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ric changes (Wu and Chang, 1982; Sivathayalan and Vaid, 1999). However,
due to creep or relaxation effects in the ice phase also samples obtained by
ground freezing will not be fully undisturbed (Vaid and Sivathayalan, 2000).
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Figure 70. Comparison of the liquefaction resistance of undisturbed sam-
ples obtained by ground freezing from a natural sand deposit and from a
freshly deposited (artificial) sand layer (Yoshimi et al., 1989)

It is well-known that a cyclic preloading with small amplitudes increases
the liquefaction resistance of a granular material (Finn et al., 1970; Park
and Silver, 1975; Suzuki and Toki, 1984; Seed et al., 1988; Teachavorasin-
skun et al., 1994; Emery et al., 1973; Oda et al., 2001). Seed et al. (1977)
performed shaking table tests in which a water-saturated sand layer was
subjected to an undrained simple shearing. Five packages with a small
number of cycles were applied in succession. They should simulate small
earthquakes. After each package the soil was reconsolidated. The accu-
mulation of pore water pressure became lower from package to package,
that means with increasing cyclic preloading (Fig. 71a). Finally, the soil
was cyclically sheared until liquefaction occurred. Despite similar density,
the curves CSR(N) of specimens subjected to a cyclic preshearing were
found to lay significantly higher than the curves of freshly pluviated sam-
ples (Fig. 71b).

Another example is shown in Fig. 72 where the results of undrained
cyclic triaxial tests of Wichtmann et al. (2005c) are presented. Parts of
the samples were subjected to a drained cyclic preloading with 10 or 100
cycles and with an amplitude of qampl = 30 or 50 kPa. Fig. 72a presents the
development of pore water pressure with time for both a preloaded and a
freshly pluviated sample. Although both samples had a similar density and
were subjected to the same average and cyclic stresses, the accumulation of
pore water pressure was much smaller in the test on the preloaded sample.
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Figure 71. Increase in the liquefaction resistance due to a cyclic preloading
with small amplitudes: shaking table tests of Seed et al. (1977)

The curves CSR(N) given in Fig. 72b also demonstrate the increase in the
liquefaction resistance with increasing intensity of the cyclic preloading.
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Figure 72. Increase in the liquefaction resistance due to a cyclic preloading
with small amplitudes: undrained cyclic triaxial tests with a drained cyclic
preloading (Wichtmann et al., 2005c)

Ishihara and Okada (1978, 1982) distinguished between a small and a
large preloading. A small preloading is defined as a preloading where the
effective stress path does not exceed the phase transformation line. The
path goes beyond the PT line in the case of a large preloading. In their
undrained cyclic triaxial tests Ishihara and Okada (1978, 1982) also found an
increased liquefaction resistance due to a small cyclic preloading (Fig. 73a).
In the case of a large preloading the behaviour depends on whether the
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PT line is exceeded in the triaxial compression or extension regime. If it
is exceeded during triaxial compression and the specimen is reconsolidated
afterwards, than during a second cyclic loading a slower accumulation of
pore water pressure is observed above the p-axis while it is faster below the
p-axis (Fig. 73c). It is the other way around for a preloading applied in the
triaxial extension regime (Fig. 73b).
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Figure 73. Effect of a “small” and a “large” preloading on the effective
stress paths in undrained cyclic triaxial tests (Ishihara and Okada, 1978)

The liquefaction resistance of soil specimens usually increases with the
time after stress application (so-called “aging”). Fig. 74 presents the results
of undrained cyclic triaxial tests performed by Seed (1979). The consoli-
dation time (1 to 100 days) was varied for the different specimens. In
Fig. 74 the cyclic stress ratio of “aged” specimens causing a liquefaction
in a certain number of cycles is divided by the respective CSR-value of a
specimen which was subjected to the undrained cyclic loading immediately
after preparation. Obviously, the liquefaction resistance increases with in-
creasing consolidation time, for example by approx. 25 % after 100 days. An
extrapolation of the test results to larger consolidation times could explain
the larger liquefaction resistance usually observed for in-situ sand deposits
(Fig. 74). A similar increase in the liquefaction resistance with time was
reported by Tatsuoka et al. (1988).

Next, the influence of the grain size distribution curve on the liquefac-
tion resistance is discussed. Fig. 75a presents data of Lee and Fitton (1969)
concerning the influence of the mean grain size d50. The cyclic stress ratio



www.manaraa.com

Behaviour of Gran. Soils Under Environ. Ind. Cyc. Loads 61

10-1 100 101 102 103 104 105 106
0.5

1.0

1.5

2.0

2.5

C
S

R
(t

) 
/ C

S
R

(t
=

0)

Time after preparation / deposition [days]

extrapolation of
laboratory tests on
reconst. specimens

laboratory tests on
reconstituded specimens
undisturbed specimens

Figure 74. Increase in the liquefaction resistance with time: cyclic loading
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causing a liquefaction in 30 cycles is presented as a function of d50. The
curve CSR(d50) shows a minimum at a mean grain size of d50 = 0.1 mm.
For smaller and larger values of d50 the liquefaction resistance increases
with decreasing or increasing d50, respectively. Seed and Idriss (1971) col-
lected data from tests performed by several researchers on different kinds of
sands. They reported about a significant decrease in the liquefaction resis-
tance with decreasing mean grain size. Seed and Idriss (1971) stated that
the liquefaction resistance is lowest for uniform fine sands with d50 ≈ 0.08
mm. Also Castro and Poulos (1977) and Dupla and Canou (2003) (Fig. 75b)
found an acceleration of the accumulation of pore water pressure with de-
creasing mean grain size. In situ a decrease in the grain size is accompanied
by a decrease in the permeability of a soil. The poor drainage during an
earthquake loading increases the liquefaction susceptibility of a fine sand.

Vaid et al. (1990b) studied the influence of the coefficient of uniformity
Cu = d60/d10 of the grain size distribution curve on the liquefaction resis-
tance. The three grain size distribution curves shown in Fig. 76a were mixed
from a natural river sand. They had different Cu-values (1.5, 3 and 6) but
the same mean grain size d50 = 0.42 mm. Specimens were prepared using
the “slurry deposition method” proposed by Kuerbis and Vaid (1988). In
Fig. 76b the cyclic stress ratio causing a liquefaction in 10 cycles is shown as
a function of relative density. Obviously, for Dr = constant the liquefaction
resistance is similar for the three tested sands, that means there is hardly
any dependence on the coefficient of uniformity.

The liquefaction resistance is decreased in the presence of a non-plastic
(non-cohesive) fines content while it is increased by a plastic (cohesive) fines
content.
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Chien et al. (2002) tested a fine sand mixed with different amounts of
non-plastic fines (grains with d < 0.075) in the range 0 ≤ FC ≤ 30 %.
Specimens were prepared by moist tamping in five layers. Fig. 77a shows
that for a constant relative density the liquefaction resistance decreases
with increasing fines content. The effect of the fines content is even more
pronounced if the data is analyzed for a constant void ratio e (Fig. 77b).
Similar test results were reported by Kokusho et al. (2004).
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Figure 77. Reduction of the liquefaction resistance in the presence of non-
plastic fines, tests of Chien et al. (2002)

With respect to Seed and Idriss (1982) a clayey sand is susceptible to
liquefaction if the grains with d < 0.005 mm are less than 15 %, if the
liquid limit of the fines is wL < 35 % and if the natural water content is
w > 0.9 wL (so-called “chinese criteria”). Kuwano et al. (1996) performed
undrained cyclic triaxial tests on mixtures of Toyoura sand with Fujinomori
clay (plasticity index IP = 37.7 %). The specimens were prepared either
by pluviation or by consolidation out of a slurry. Fig. 78a shows the cyclic
stress ratio causing a double axial strain amplitude of 2εampl = 5 % in 20
cycles as a function of the clay content. Obviously, the liquefaction resis-
tance increases with increasing clay content, independently of the sample
preparation method. Ishihara et al. (1978) reported an even faster increase
of the liquefaction resistance with the clay content for an over-consolidated
soil than for a normally consolidated one. The undrained cyclic triaxial tests
of Ishihara and Koseki (1989) (Fig. 78b) demonstrated that the increase of
the liquefaction resistance due to a plastic fines content is the larger, the
higher the plasticity index IP of the fines is. For small plasticity indices
IP < 10 the liquefaction resistance is similar to that of clean sand.

During earthquakes also gravelly soil deposits have been observed to
liquefy (Youd et al., 1985; Andrus and Youd, 1987; Ishihara, 1995; Towhata,
2008). Despite their large permeability such a liquefaction can occur if the
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Figure 78. Increase of the liquefaction resistance by plastic fines: a) study
of Kuwano et al. (1996), b) data collected by Ishihara and Koseki (1989)

gravelly layers are encompassed by layers with a much lower permeability. In
most laboratory studies on undisturbed or reconstituted samples of gravelly
materials (Wong et al., 1975; Kokusho and Tanaka, 1994; Goto et al., 1994;
Hatanaka et al., 1988; Tanaka et al., 1991; Konno et al., 1994; Ishihara, 1995)
a higher liquefaction resistance has been measured as usually obtained for
sand. This is in good agreement with the d50-dependence shown in Fig. 75.
Ishihara (1995) stated that the liquefaction resistance of gravelly soils can
strongly vary in dependence of their depositional history. Towhata (2008)
warned that the higher liquefaction resistance usually measured for gravelly
soils may be partly due to membrane penetration effects (see a discussion
below).

The important role of the degree of saturation Sr is demonstrated by
the data of Xia and Hu (1991) in Fig. 79. They prepared specimens of a
fine sand with four different degrees of saturation Sr = 100.0, 99.5, 99.1
and 97.8, corresponding to B-values of 1.0, 0.928, 0.857 and 0.714. The test
results in Fig. 79 reveal a significant decrease of the liquefaction resistance
with increasing Sr.

The effect of the polarization of the cycles was tested by Choi and Ar-
duino (2004) in true triaxial tests on a gravelly material. They applied
shear cycles in different directions of the deviatoric plane. The pore water
pressure accumulation was found similar for all tested directions (Fig. 80a).
Therefore, the polarization of the cycles seems not to influence the lique-
faction resistance as long as is not changed. This is in accordance with the
results from drained cyclic tests (Fig. 22b).

Yamada and Ishihara (1982) tested the influence of polarization changes
in undrained true triaxial tests. The same loading as used in the correspond-
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and Ishihara, 1982)
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ing drained tests (Fig. 28b) was applied. Similar as in the drained tests a
significant increase of the rate of pore water pressure accumulation was ob-
served due to a change of the polarization of the cycles (Fig. 80b). The
effect was stronger for larger angles θ between the subsequent polarizations.

Ishihara and Yamazaki (1980) studied the influence of the shape of the
cycles in multiaxial undrained simple shear tests. They tested elliptical and
cross-shaped cycles (Fig. 81). The shear stress amplitude τampl

1 in one direc-

tion was kept constant while the amplitude τampl
2 in the orthogonal direction

was varied in the range 0 ≤ τampl
2 ≤ τampl

1 . For both, the elliptical and the
cross-shaped cycles the accumulation of pore water pressure increased with
increasing ratio τampl

2 /τampl
1 . A slightly faster accumulation of pore water

pressure was observed for the elliptical cycles compared to the cross-shaped
ones. This strong influence of the shape of the cycles is in good agreement
with the results from drained cyclic tests (Fig. 23).
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Figure 81. Influence of the shape of the cycles: multi-directional simple
shear tests of Ishihara and Yamazaki (1980) with elliptical and cross-shaped
stress loops

The time history of the shear stress τ(t) during an earthquake is irregu-
lar (Fig. 2b). For an estimation of the liquefaction risk (see Section 4.4) this
irregular load pattern is usually replaced by an equivalent number of regular
cycles with a constant amplitude (Seed et al., 1975b; Seed and Idriss, 1971).
Equivalent means that both, the irregular and the regular load pattern
cause the same final value of the excess pore water pressure. The amplitude
of the regular cycles is chosen as a certain fraction of the maximum shear
stress during the irregular time history. For an appropriate choice of this
factor, several researchers have compared an irregular and a regular cyclic
loading (Ishihara and Yasuda, 1972, 1975; Ishihara and Nagase, 1988). Ex-
emplary, results from hollow cylinder triaxial tests of Ishihara and Yasuda
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(1975) are shown in Fig. 82. Signals from real earthquakes were scaled and
applied as shear stress τ(t) to the laboratory specimens. Different types
of signals were tested. Ishihara and Yasuda (1975) distinguished between
“shock-type” (e.g. Fig. 82a) and “vibration-type” signals (e.g. Fig. 82b). A
“shock-type” signal is characterized by only a few peaks (reaching at least
60 % of τmax) prior and after the maximum shear stress τmax. Otherwise
the signal is classified to be of the “vibration-type”. Fig. 82c presents the
maximum stress ratio τmax/p′0 as a function of the normalized pore water
pressure Δu/p′0 for both types of signals. From such diagrams the lowest
ratio τmax/p′0 causing a liquefaction (Δu/p′0 = 1) is read off. A compari-
son with the amplitudes of regular cycles causing a liquefaction in 20 cycles
lead to a ratio τmax

regular/τ
max
irregular = 0.55 for the shock-type signals and to

τmax
regular/τ

max
irregular = 0.70 for the vibration-type ones. Seed and Idriss (1971)

used a factor of 0.65. Whitman (1971) proposed to use a factor of 0.67 for
a strong earthquake with 20 seconds duration and larger values for a longer
duration.

Ishihara and Nagase (1988) performed multiaxial simple shear tests and
applied irregular cyclic loading histories in two perpendicular directions. A
comparison with a one-dimensional regular loading with constant ampli-
tude lead to correction factors that consider both, the irregularity and the
multidimensionality of the cyclic loading.
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Figure 82. Comparison of regular and irregular cyclic loadings (Ishihara
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The results of undrained cyclic tests may be erroneous due to mem-
brane penetration effects. If the pore water pressure increases due to an
undrained cyclic loading the effective lateral stress σ′

3 decreases and thus
the penetration of the membrane into the voids at the boundary of the
specimen decreases (Fig. 83a). Therefore, the volume occupied by the pore



www.manaraa.com

68 T. Wichtmann and T. Triantafyllidis

water increases. Consequently, the pore water pressure accumulation is
lower than in the case εv = 0 and a larger number of cycles is necessary
to reach liquefaction. Therefore, membrane penetration effects lead to an
overestimation of the liquefaction resistance which may result in an unsafe
design for structures.
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Figure 83. a) Schematic illustration of membrane penetration effects
(Wichtmann, 2005), b) Increase of membrane penetration with increasing
grain size d20 according to Nicholson et al. (1993)

Membrane penetration effects increase with increasing grain size of the
tested material. This becomes clear from the diagram of Nicholson et al.
(1993) (Fig. 83b) which shows the volume change due to membrane pene-
tration per unit area of the membrane as a function of the grain size d20.

Some researchers developed a special control of undrained cyclic tests
in order to compensate membrane penetration effects and to guarantee a
constant volume. Tokimatsu and Nakamura (1986) compared the results
of such tests performed with a special control (without system compliance)
with results from conventional tests (with system compliance). A sand with
a mean grain size of d50 = 1 mm was tested. Fig. 84 shows a much faster
accumulation of pore water pressure and thus a significantly lower lique-
faction resistance in the tests without system compliance. Therefore, the
liquefaction resistance may be strongly over-estimated for coarse materials
if membrane penetration effects are not taken into account.

Several methods have been developed to purify the results of conven-
tional undrained cyclic tests from membrane penetration effects (Martin
et al., 1978; Tokimatsu and Nakamura, 1987; Tokimatsu, 1990). A simple
method was proposed by Tokimatsu (1990). The system compliance ratio
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CR can be estimated from

CR =
B

3uampl

qampl

− 1 (25)

with Skempton’s B-value and with the amplitudes uampl and qampl of the
pore water pressure and the deviatoric stress taken from the middle stage
of a test as shown in Fig. 84a. With CR as an input value the parame-
ter CN can be read off from the correlation given in Fig. 85a. CN may
be used for a correction of the curves CSR(N) as shown in Fig. 85b. CN

is the ratio between the number of cycles Nc necessary to reach liquefac-
tion for a certain cyclic stress ratio in a test with system compliance and
the corresponding number of cycles N0 in a test without system compli-
ance. Tokimatsu (1990) could demonstrate that the curves CSR(N) from
the conventional tests corrected by membrane penetration effects using the
described method agreed well with the curves from the specially controlled
tests without system compliance (Fig. 84b).

4.3 Parameters Affecting Soil Response to Undrained Monotonic
Loading

The combined influence of void ratio and effective consolidation stress can
be demonstrated based on undrained monotonic triaxial tests performed
by Verdugo and Ishihara (1996) (Fig. 86). The specimens of Toyoura sand
were prepared by moist tamping. Fig. 86 presents the q(ε1)-curves and the
effective stress paths in the p′-q-plane of four tests performed on specimens
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Figure 85. a) Correlation between CR and CN , b) correction of the curves
CSR(N) measured in conventional undrained cyclic triaxial tests consider-
ing membrane penetration effects (Tokimatsu, 1990)

with the same relative density Dr = 37.9 % but with different isotropic
consolidation stresses. All specimens reached the same final stress (“steady
state”). The specimens consolidated at a small pressure p′0 showed a dilative
behaviour and a continuous increase of the deviatoric stress. A contractive
behaviour and a strain softening was observed for the specimens consoli-
dated at a large p′0.

0 5 10 15 20 25 30
0

0.4

0.8

1.2

1.6

D
ev

ia
to

ric
 s

tr
es

s 
q 

[M
P

a]

0

0.4

0.8

1.2

1.6

D
ev

ia
to

ric
 s

tr
es

s 
q 

[M
P

a]

Axial strain ε1 [%]
0 0.5 1.0 1.5 2.0 2.5 3.0

Effective mean stress p' [MPa]

a) b)
Toyoura sand
e = 0.833
Dr = 37.9 %

Toyoura sand
e = 0.833
Dr = 37.9 %

p0' = 0.1 MPa

p0' = 1.0 MPa

p0' = 2.0 MPa

p0' = 3.0 MPa
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undrained monotonic tests performed on specimens with similar density
but consolidated at different pressures p′0 (Verdugo and Ishihara, 1996)

Doanh et al. (2006) compared the effective stress paths for specimens
consolidated isotropically (Fig. 87a) or anisotropically (Fig. 87b). The very
loose specimens of Hostun RF sand were prepared by moist tamping. All
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specimens showed a contractive behaviour reaching a “steady state” at low
pressures. In the case of the anisotropically consolidated specimens the
maximum deviatoric stress was reached near the consolidation stress and at
a small axial strain. Although the shape of the stress paths is different for
an isotropic and an anisotropic consolidation, the inclination of the PT and
the failure line does not depend on the type of consolidation.
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Figure 87. Effective stress paths in undrained monotonic tests with a)
isotropic and b) anisotropic consolidation stresses (Doanh et al., 2006)

The soil response to an undrained monotonic shearing depends strongly
on the initial fabric of the grain skeleton, that means on the specimen prepa-
ration method. Fig. 88a presents results from undrained simple shear tests
performed by Vaid et al. (1995). The specimens were prepared by air plu-
viation, water pluviation or moist tamping. Despite similar initial densities
and although the axial effective consolidation stress σ′

1,0 was equal, the
curves q(ε1) look quite different. After having reached a maximum de-
viatoric stress, the specimen prepared by moist tamping showed a strong
softening behaviour. A continuous increase of the deviatoric stress was mea-
sured for the water-pluviated sample. The curve for the specimen prepared
by air pluviation lays in between. Triaxial tests of Vaid et al. (1999) showed
a similar large influence of the sample preparation technique (Fig. 88b).
While the specimen preparation method affects the point where the ef-
fective stress path reaches the PT- or QSS line, it does not influence the
inclination of the PT- or QSS line in the p′-q-plane (Ishihara, 1993, 1995).
Furthermore, the “steady state” is independent of the preparation method.

The effect of a monotonic preloading was studied by Doanh et al. (2006).
They performed tests with an isotropic, K0- or deviatoric preloading applied
under drained or undrained conditions. Results from tests with a drained
deviatoric preloading applied on the triaxial compression side are given in
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Figure 88. Influence of the specimen preparation method on undrained
monotonic response in a) simple shear tests (Vaid et al., 1995) and b) triaxial
tests (Vaid et al., 1999)

Fig. 89a. If an undrained triaxial compression test was performed after
this preloading, the maximum deviatoric stress reached during the test in-
creased with increasing preloading. In the initial phase of a test the stress
path tended to follow the stress path applied during preloading. Although
the specimens were still very loose after preloading, the stress path passed
a pronounced QSS state which is untypical for loose sand. However, the
inclination of the PT- or QSS-line seems to be unaffected by the monotonic
preloading. If an undrained triaxial extension test was performed on a spec-
imen which was preloaded on the triaxial compression side, the minimum
deviatoric stress reached during the test was reduced compared to a non-
preloaded specimen. For a preloading on the extension side the behaviour is
the other way around (Fig. 89b). Similar conclusions concerning the effect
of a monotonic preloading were drawn by Vaid et al. (1989).

The influence of the angle α between the direction of the largest principal
stress σ′

1 and the axis of sedimentation was studied by Vaid and Sivathay-
alan (2000). For triaxial compression α = 0◦ and for triaxial extension
α = 90◦ holds. Considering the different curves q(ε1) in triaxial compres-
sion and extension tests (Fig. 90a) it becomes clear that α influences the
undrained monotonic response. While the triaxial compression tests showed
a strain hardening, a strain softening behaviour was observed in the triaxial
extension tests. Similar test results have been reported elsewhere (Bishop,
1971; Hanzawa, 1980; Miura and Toki, 1982; Riemer and Seed, 1997; Vaid
et al., 1990a). The tests of Uthayakumar and Vaid (1998) showed that the
transition from a strain hardening to a strain softening behaviour occurs
continuously with increasing α (Fig. 90b). The observed dependence of the
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Figure 89. Undrained monotonic triaxial tests of Doanh et al. (2006) on
very loose samples prepared by moist tamping: effect of a drained deviatoric
preloading with a) triaxial compression and b) triaxial extension

undrained monotonic response on the direction of loading is due to an in-
herent anisotropy of the soil samples induced during specimen preparation.
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Figure 90. Effect of the loading direction on undrained monotonic re-
sponse: a) Comparison of triaxial compression and extension tests (Vaid
and Sivathayalan, 2000), b) Tests with varying α-values (Uthayakumar and
Vaid, 1998)

The influence of the intermediate principal stress σ′

2 can be quantified
by the parameter

b =
σ′

2 − σ′

3

σ′

1 − σ′

3

(26)

with σ′

1 and σ′

3 being the largest and the smallest principal stress, respec-
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tively. For triaxial compression (σ′

2 = σ′

3) b = 0 holds while b = 1 applies
during triaxial extension (σ′

2 = σ′

1). In the tests of Uthayakumar and Vaid
(1998) (Fig. 90b) the loading direction was kept constant to α = 90◦ while
the parameter b was varied between 0 and 1. Obviously, the strain softening
becomes more pronounced with increasing b.

If a monotonic undrained triaxial test is interrupted by several un- and
reloading cycles, the curve q(ε1) and the effective stress path in the p′-q-
plane are similar as in a test without such cycles (Fig. 91).
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Figure 91. Undrained monotonic triaxial test with several un- and re-
loading cycles compared to a test without such cycles (Ishihara, 1995)

Vaid and Eliadorani (1998) compared the soil behaviour in monotonic
triaxial tests with partly drained or fully undrained conditions, respectively
(Fig. 92). In the partly drained test the volumetric strain was controlled
to fulfill εv = 0.6ε1. While in the fully undrained test a dilative and strain
hardening behaviour was observed, the partly drained test showed a contrac-
tive and strain softening response. Vaid and Eliadorani (1998) concluded
that even small volume changes in situ could lead to a strain softening and
consequently fully undrained tests were on the unsafe side.

4.4 Estimation of the Liquefaction Risk in Situ

The liquefaction risk for an in-situ soil deposit may be estimated by em-
ploying the following methods (Towhata, 2008):

1. Comparison of sounding resistances (e.g. SPT blow count or CPT tip
resistance) with critical values

2. Estimation via a safety factor

FL =
Resistance

Action
, (27)
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Figure 92. Comparison of a partly drained and a fully undrained monotonic
triaxial test (Vaid and Eliadorani, 1998)

which is evaluated as a function of depth z below ground surface. The
action can be obtained using either
a) an estimation based on the maximum acceleration at the ground

surface using a semi-empirical equation or

b) a dynamic calculation of wave propagation in which the time
history uh(t) of the horizontal displacement is prescribed at a
certain depth. The reduction of soil stiffness due to a pore water
pressure build-up is disregarded in these calculations.

The resistance of the soil against liquefaction can be assessed from:
a) cyclic undrained laboratory tests on undisturbed or reconstituted

specimens or from

b) correlations with sounding resistances (e.g. SPT blow count or
CPT tip resistance) or with the shear wave velocity or from

c) large-scale in-situ tests
Both, the action and the resistance may be either analyzed in terms of
stresses (“stress approach”, Seed and Idriss, 1971; Seed et al., 1975a;
Seed, 1979) or in terms of strains (“strain approach”, Dobry et al.,
1982). A liquefaction is likely when the acting shear stress ampli-

tude τampl
act is larger than the soil resistance τampl

res (Fig. 93a). If the
analysis is performed with strains, it has to be examined first if the
acting shear strain amplitude γampl

act is larger than a threshold value

γampl
tv (Fig. 93b). In case γampl

act > γampl
tv the pore water pressure ratio

Δu/p′0 has to be estimated from a diagram as shown in Fig. 57a. A
liquefaction is likely to occur if Δu/p′0 is equal to one.

3. Dynamic calculation of wave propagation using a constitutive model
which describes the stress-strain hysteresis and considers the accumu-
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lation of volumetric strain in the drained case and the build-up of pore
water pressure in the undrained case (e.g. Osinov, 2003a,b).
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ampl(z) = ampl
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ampl(z)actaction 
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liquefaction

act

res
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tv

Figure 93. Comparison of acting a) shear stress or b) shear strain ampli-
tudes with the corresponding resistance of the soil against liquefaction

The profile τampl
act (z) of the acting shear stress amplitude with depth can

be estimated from the maximum acceleration amax at the ground surface
using (Seed and Idriss, 1971)

τampl
act (z)

σv0
′(z)

= 0.65
amax

g

σv0(z)

σv0
′(z)

rd(z) (28)

with σv0(z) and σv0
′(z) being the total or effective vertical stress before the

earthquake and g the acceleration of gravity. Eq. (28) was derived from
the assumption that the upper soil layers move like a rigid block (Fig. 94a),
although the displacement of the shear waves with depth follows a trigono-
metric function. The error made by this assumption is assumed to be com-
pensated by the reduction factor rd(z) in Eq. (28). It takes the value 1
at the ground surface and decreases with depth (Fig. 94b). In standard
codes the reduction factor is often approximated by a linear function, e.g.
rd = 1− 0.015z. Modern design codes (e.g. the Japanese “Highway Bridge
Design Code”) use modifications of Eq. (28) and specify the maximum ac-
celeration amax that has to be used for design (e.g. amax = 0.15g).

The irregular cyclic loading history has to be replaced by an equivalent
number of regular cycles with constant amplitude. The amplitude of the
regular cycles is usually chosen as τampl = 0.65τmax with τmax being the
maximum shear stress in the irregular load pattern. In order to determine
the equivalent number of cycles, all cycles in the irregular load pattern
which have an amplitude τampl �= 0.65τmax are weighted by a factor which
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Figure 94. a) Analogy of a rigid block as basis for Eq. (28), b) Correction
factor rd(z)

can be taken from a diagram as shown in Fig. 95a (e.g. one cycle with
τampl/τmax = 1 counts like three cycles with τampl/τmax = 0.65 and one cy-
cle with τampl/τmax = 0.45 counts like 0.1 cycles with τampl/τmax = 0.65).
The sum of these weighted numbers of cycles is the equivalent number of cy-
cles Neq. The procedure may be applied separately to the peaks above and
below the time axis, taking the mean value as Neq. A simplified determi-
nation of Neq based on the earthquake magnitude has also been developed
(Fig. 95b). Modern design codes usually specify the number of cycles for
which the design has to be made (often N = 20, Towhata, 2008).
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Figure 95. a) Weighting factor for amplitudes τampl �= 0.65 τmax (DeAlba
et al., 1975), b) Estimation of an equivalent number of cycles N in depen-
dence of the earthquake magnitude M (Seed et al., 1975b)
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Using the strain approach, a profile of the acting shear strain amplitude
γampl
act (z) may be estimated from the maximum acceleration amax at the

ground surface using (Dobry et al., 1982)

γampl
act (z) = 0.65

amax

g

σ0(z) rd(z)

Gmax(z)
G

Gmax

(γampl
act (z))

(29)

wherein Gmax is the small-strain shear modulus at shear strain amplitudes
γampl ≤ 10−6 and G/Gmax is the amplitude-dependent modulus reduction
factor (see Section 5). Gmax can be determined in situ from measurements
of the shear wave velocity. The modulus reduction factor can be measured
in resonant column tests in the laboratory. Since G/Gmax depends on γampl

act ,
Eq. (29) has to be solved by iteration.

The liquefaction resistance can be determined in laboratory tests on
high-quality undisturbed specimens or on reconstituted specimens that re-
produce the in-situ fabric of the grain skeleton. The profile of the shear
stress amplitude τampl

res causing a liquefaction in N equivalent cycles can be
estimated from (Seed and Idriss, 1971)

τampl
res

σv0
′(z)

=

(
qampl

2p0′

)
50

Cr
Dr(z)

50
(30)

Therein (qampl/(2p0
′))50 is the cyclic stress ratio causing a liquefaction in N

cycles in undrained cyclic triaxial tests on specimens with a relative density
of Dr = 50 %. It should be considered that the linear relationship between
the liquefaction resistance and Dr implemented in Eq. (30) is valid only
for Dr < 75 % (Fig. 60b). In order to transfer the results from undrained
cyclic triaxial tests to in-situ conditions the density-dependent correction
factor Cr (Fig. 96) has been introduced in Eq. (30). It mainly considers the
differences between the isotropic consolidation in the laboratory test and
the K0 stress state in situ.
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Figure 96. Correction factor Cr for the application of laboratory test re-
sults to in-situ conditions (Seed and Idriss, 1971)
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The threshold shear strain amplitude γampl
tv necessary for the analysis in

terms of strains can be determined from strain-controlled cyclic tests with
different amplitudes (Fig. 57).

The liquefaction resistance is often estimated using correlation diagrams
with the SPT blow count or the CPT tip resistance as input values. An
example for an SPT-based correlation is given in Fig. 97a. For the de-
velopment of such correlations informations about the sounding resistance
of a sand deposit, the shear stresses developed during an earthquake and
whether the soil has liquefied or not (judged by visible signs on the ground
surface) are needed. Combinations of sounding resistance and cyclic shear
stress ratio having caused a liquefaction are marked by a filled symbol.
Those without visible signs of a liquefaction are marked by an empty sym-
bol. The correlation curve separates the region with filled symbols from that
with empty symbols (see the solid curve in Fig. 97a). Usually a pressure-
normalized sounding resistance is used on the abscissa:

NSPT,1 = cN NSPT (31)

Different functions are employed for the factor cN . Towhata (2008) recom-
mends to calculate it from

cN =
1.7

σ′

v[kPa]/98 + 0.7
(32)

Several correlations between the liquefaction resistance and the SPT blow
count have been developed for various kinds of sands (Seed and Idriss, 1971;
Castro, 1975; Christian and Swiger, 1975; Seed et al., 1975a, 1977; Seed,
1979, 1987; Tatsuoka et al., 1980; Seed et al., 1985; Robertson et al., 1992).
Some of these correlations consider the influence of the mean grain size d50
or the influence of the fines content. Some authors specify different curves
for different amounts of shear strain. Some correlation curves have been
collected by Ishihara (1993) in Fig. 97b. Since the SPT method used in
Japan induces a 1.2 times larger energy compared with the method applied
in the USA, the SPT blow count values of correlations developed based on
US data have been multiplied by 1/1.2 = 0.833 in Fig. 97b for comparison
purposes. Some few correlations for gravelly materials have also been pro-
posed (Tokimatsu, 1988; Andrus and Youd, 1989; Ishihara, 1995). If the
NSPT-values are lower than the critical values specified by Ishihara (1995)
in Fig. 98a a flow liquefaction is likely to occur.

Beside the SPT-based diagrams, also several correlations of the liquefac-
tion resistance with the CPT tip resistance can be found in the literature
(Robertson and Campanella, 1983, 1985; Seed and de Alba, 1986; Shibata
and Teparaksa, 1988; Sladen and Hewitt, 1989; Mitchell and Tseng, 1990;
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normalized blow count N1 from SPT soundings: a) data collected by
Towhata (2008), b) correlations compared by Ishihara (1993)

0 5 10 15 20 25
300

250

200

150

100

50

0

V
er

tic
al

 s
tr

es
s 

σ
v' 

[k
P

a]

CPT qc-value

range for sites
with no liquefaction

Kogyuk: No liq.

Amauligak: Liq.

Nerlerk: 
Liq.

Alerk: 
Liq.

liquefaction no liq.

0 2 4 6 8 10 12
140

120

100

80

60

40

20

0

V
er

tic
al

 s
tr

es
s 

σ
v' 

[k
P

a]

SPT N-value

flow no flow

sands with 
fines content
less than 30 %

a) b)

Figure 98. Critical values for flow liquefaction (Ishihara, 1995): a) SPT
blow count N , b) CPT tip resistance qc

Olsen and Koester, 1995; Suzuki et al., 1995; Stark and Olson, 1995; Robert-
son et al., 1992; Robertson and Wride, 1998; Robertson and Fear, 1995). An
example is given in Fig. 99a. These correlations of Shibata and Teparaksa
(1988) use the pressure-normalized tip resistance

qc1 = cN qc with cN =
0.17

σ′

v0[MPa] + 0.07
(33)

Furthermore, another scaling factor C2 = d50/0.25 has been introduced on
the x-axis for grain sizes d50 < 0.25 mm in order to describe the data for
various mean grain sizes by the same correlation curve (Fig. 99a). Several
correlations between the cyclic stress ratio and qc1 have been collected by
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Ishihara (1993) in Fig. 99b. If the qc-values are lower than the critical values
specified by Ishihara (1995) in Fig. 98b a flow liquefaction is likely to occur.
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Figure 99. Correlations of the liquefaction resistance with pressure-
normalized CPT tip resistance qc1: a) data collected by Shibata and
Teparaksa (1988), b) correlations compared by Ishihara (1993)

Correlation diagrams between the liquefaction potential of a soil and the
sounding resistance can also be established based on a combination of in-
situ soundings and undrained cyclic laboratory tests on high-quality undis-
turbed specimens (Seed, 1979; Ishihara, 1995). The procedure is illustrated
schematically in Fig. 100.
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Figure 100. Development of correlation diagrams based on soundings and
undrained cyclic laboratory tests on high-quality undisturbed specimens

Another group of correlations uses the shear wave velocity vS or the
small-strain shear modulus Gmax as input values (Bierschwale and Stokoe,
1984; Robertson et al., 1992). Fig. 101a presents a correlation of Robertson
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et al. (1992). The pressure-normalized shear wave velocity vS1 is calculated
from

vS1 = cN vS with cN =

(
patm
σ′

v0

)0.25

(34)

Another correlation formulated by Tokimatsu and Uchida (1990) in terms
of Gmax is shown in Fig. 101b. The void ratio function used in this corre-
lation is defined as F (emin) = (2.17− emin)

2/(1 + emin) with the minimum
void ratio emin. It has to be critically remarked that fabric effects (aging,
cyclic preloading) significantly change the liquefaction resistance while they
hardly affect vS or Gmax (as discussed in Section 5). Therefore, correlations
between vS and the liquefaction resistance are questionable.
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Figure 101. Correlations of the liquefaction resistance with a) pressure-
normalized shear wave velocity vS1 (Robertson et al., 1992) and b) pressure-
and void ratio-normalized small strain shear modulus GN (Tokimatsu and
Uchida, 1990)

Correlations between the volumetric strain accumulated in a drained
cyclic pressuremeter test and the liquefaction resistance have been developed
by Dupla and Canou (2003). They performed cavity expansion tests in a
thick-walled hollow cylinder specimen and in a calibration chamber and
correlated the results with those of undrained cyclic triaxial tests. Such a
correlation seems promising since both, the accumulation of strain in the
drained case and the accumulation of pore water pressure under undrained
conditions are “two sides of the same medal”. Therefore they are influenced
by parameters like density, aging, cyclic preloading etc. in a similar manner.
However, this method has not been confirmed by in-situ tests yet.

The liquefaction resistance can also be estimated by means of an in-
situ test loading. For that purpose a water-saturated soil deposit must be
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instrumented with geophones and pore water pressure transducers. Then
a dynamic loading is applied on the soil surface (e.g. by a truck equipped
with a hydraulic shaker, Stokoe II et al., 2004) or in a certain depth. The
amplitude is step-wise increased. With the shear strains estimated from
the geophone signals and the measured pore water pressure (Fig. 102a)
a diagram as shown in Fig. 102b can be developed. It looks similar to
that derived from displacement-controlled cyclic laboratory tests (Fig. 57)
and may be applied for an analysis of the liquefaction risk using the strain
approach (Dobry et al., 1982).
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Figure 102. Development of correlations Δu - γampl from in-situ test load-
ings (Stokoe II et al., 2004)

5 Secant Stiffness During Cyclic Loading
(Small-Strain Stiffness)

5.1 Introduction

A schematic illustration of a closed shear stress-shear strain-hysteresis is
given in Fig. 103a. The secant shear modulus G = τampl/γampl corresponds
with the inclination of a straight line passing through the two extreme points
of the hysteresis. Below a certain shear strain amplitude (for sand usually
below γampl = 10−5) the secant shear modulus G takes its maximum Gmax

and is independent of the shear strain amplitude. In the literature Gmax is
also addressed as “dynamic shear modulus” and termed Gdyn or G0. For
γampl > 10−5, the secant shear modulus G decreases with increasing shear
strain amplitude (Fig. 103b).

The secant shear modulus G or the shear wave velocity vS =
√
G/�

may be used in a dynamic analysis of foundations, in order to represent the
soil response by a combination of a spring and a dashpot as “lumped” pa-
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Figure 103. a) Definition of the secant shear modulus G, b) Decrease of
G with increasing shear strain amplitude γampl

rameters. Common formulas for the spring and dashpot constants (Richart
et al., 1970; Triantafyllidis and Prange, 1987) take Gmax and Poisson’s ratio
ν as input variables. The elastic soil parameters are also necessary for wave
propagation analyses. Furthermore, as previously commented, a high-cycle
accumulation model needs the resilient portion of deformation to be defined,
in particular the spatial field of the strain amplitude εampl as input. The
“dynamic” soil properties may be also used in order to prove the stability
of railways (Hu et al., 2003, 2004).

The “dynamic” soil properties can be determined from in-situ measure-
ments (e.g. cross-hole or down-hole measurements). For feasibility studies
and for final design calculations in small projects dynamic soil properties
are often estimated from empirical equations (Gazetas, 1991). Correlation
diagrams between “dynamic” and “static” stiffness moduli or between Gmax

and sounding resistances are also applied.

5.2 Parameters Affecting the Small-Strain Stiffness of Non-Cohesive
Soils

The influence of pressure on the small-strain stiffness may be derived
from the examination of the contact of two particles. Fig. 104a shows the
contact of two perfect elastic spheres. The stiffness E of this system can be
calculated from (Hertz, 1881):

E =
3

2

[
2Ḡ

3(1− ν̄)

] 2

3

σ
1

3 (35)

with Ḡ and ν̄ being the shear modulus and the Poisson’s ratio of the sphere
material. σ = F/d2 is the stress in the axial direction, with F being the
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axial contact force and d the diameter of the spheres. According to Eq. (35),
the P-wave velocity vP =

√
E/� should increase proportionally to σ1/6.

Goddard (1990) derived the stiffness of a contact of a sphere and a conus
(inclination angle α, see Fig. 104b):

E =

(
Ḡ

1− ν̄

) 1

2
(

6

πα

) 1

2

σ
1

2 (36)

Eq. (36) delivers a proportionality vP ∼ σ1/4. Goddard assumed Equation
(36) to be valid below a transition stress σ∗, while Eq. (35) holds for σ > σ∗

(Fig. 104c). σ∗ can be derived from setting equal Equations (35) and (36).
It strongly depends on α:

σ∗ =
1

96

Ḡ

1− ν̄
π3 α3 (37)
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Figure 104. a) Contact of two elastic spheres (Hertz, 1881), b) Contact
of a conus and a sphere (Goddard, 1990), c) Transition from Goddard to
Hertz contact with increasing contact pressure (Goddard, 1990)

One of the first experimental studies on the stress-dependence of wave
velocities was performed by Duffy and Mindlin (1957). They measured vP in
the longitudinal direction of rods composed of stainless steel spheres having
a single diameter d = 3.175 mm. Spheres with two different tolerances of the
diameter (±12, 7 · 10−4 mm and ±2, 5 · 10−4 mm) were tested. They were
encompassed by a membrane and stabilized by vacuum. For the spheres
with the larger tolerances Duffy and Mindlin (1957) observed vp ∼ p0.25

over the whole tested range of pressures 0 ≤ p ≤ 100 kPa (Fig. 105a),
which is in accordance with the contact theory described by Goddard (1990).
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For the more perfect spheres (i.e. with smaller tolerance) vp ∼ p0.195 was
obtained for p < 35 kPa while vp ∼ p0.167 was measured for larger pressures.
The latter value is in good congruence with the theory of Hertz (1881).
The experiments demonstrate that small deviations from the shape of ideal
spheres cause a significant increase in the exponent n of the relationship
vp ∼ pn.
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Figure 105. a) P-wave velocity measured in rods of steel spheres with
different tolerances (Duffy and Mindlin, 1957), b) Increase of P- and S-
wave velocities of dry Ottawa sand with increasing pressure (Hardin and
Richart Jr., 1963)

In a pioneer work Hardin and Richart Jr. (1963) determined P- and
S-wave velocities in dry and water-saturated sands by means of RC tests.
Round-sphaped Ottawa sand and a crushed quartz sand were tested. Curves
vS(p) and vP (p) for dry Ottawa sand are given in Fig. 105b. The pressure-
dependence could be approximated by vP ∼ pn or vS ∼ pn, respectively.
For large pressures p ≥ 95 kPa all exponents n were around 0.25, which is
in accordance with the contact theory of Goddard (1990). Larger n-values
(0.29 ≤ n ≤ 0.42) were measured for Ottawa-Sand at small pressures p < 95
kPa. For a uniform quartz sand with subangular grain shape Wichtmann
(2005) obtained exponents n between 0.22 and 0.24.

The decrease in vS or Gmax with increasing void ratio e is demonstrated
in Figure 106 which shows test results of Hardin and Richart Jr. (1963) and
Wichtmann and Triantafyllidis (2004b). Hardin and Black (1966) proposed
an approximation of Gmax(e, p) by

Gmax = A
(a− e)2

1 + e︸ ︷︷ ︸
F (e)

pn (38)
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The constants A, a and n were derived from the tests of Hardin and
Richart Jr. (1963). Using Gmax in [MPa] and p in [kPa], for Ottawa sand
and small pressures p ≤ 95 kPa the constants A = 4.804, a = 2.12 and
n = 0.6 were recommended while A = 6.911, a = 2.17 and n = 0.5 were
determined for p ≥ 95 kPa. For crushed quartz sand the constants were A
= 3.231, a = 2.97 and n = 0.5. Eq. (38) is also often used in a version with
dimensionless constants

Gmax = A F (e) patm
1−n pn (39)

using the atmospheric pressure patm = 100 kPa.
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Figure 106. Decrease in shear wave velocity vS or small-strain shear mod-
ulus Gmax with increasing void ratio: tests of a) Hardin and Richart Jr.
(1963) and b) Wichtmann and Triantafyllidis (2004b)

An alternative empirical formula using a dimensionless modulus coeffi-
cient K2 is frequently used in the USA (Seed et al., 1986) (here converted
to SI units):

G = 218.8 K2 p0.5 (40)

with G and p in [kPa]. At very low strain amplitudes γampl ≈ 10−6 the
modulus coefficient is denoted as K2,max. Seed et al. (1986) stated that
K2,max-values obtained from laboratory tests range from about 30 for loose
sands to about 75 for dense sands. For gravelly soils, somewhat higher
values of K2,max were measured.

Curves G(γampl)/Gmax given by Seed et al. (1986) for different pressures
are presented in Fig. 107a. Obviously, the decrease in G/Gmax with increas-
ing shear strain amplitude γampl becomes larger with decreasing pressures p.
Similar test results were presented by Kokusho (1980) and Wichtmann and
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Triantafyllidis (2005a). Based on several experimental studies in the litera-
ture Seed et al. (1986) specify a typical range of the curves G(γampl)/Gmax

for sand (Fig. 107a).
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Figure 107. a) Decrease in secant shear modulus G (Seed et al., 1986) and
b) increase in damping ratio (Hardin and Drnevich, 1972a) with increasing
shear strain amplitude γampl

The effect of pressure on the curves of damping ratio D(γampl) may be
judged from the experimental results of Hardin and Drnevich (1972a) shown
in Fig. 107b. The increase in the damping ratio with increasing shear strain
amplitudes is larger for smaller pressures.

Kokusho (1980) could not find an influence of void ratio on the curves
G(γampl)/Gmax and D(γampl) (Fig. 108). This is in accordance with test
results obtained by the authors (Wichtmann and Triantafyllidis, 2005a)
shown in Fig. 109.
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D(γampl) (Kokusho, 1980)
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Figure 109. No influence of density on the curves G(γampl)/Gmax and
D(γampl) (Wichtmann and Triantafyllidis, 2005a)

The onset of settlements in a resonant column test is usually observed
at shear strain amplitudes between γampl = 5 · 10−5 and γampl = 1 · 10−4

(Fig. 110a).
If the secant shear modulus G at various shear strain amplitudes γampl is

plotted versus mean pressure p (Fig. 110b, Wichtmann (2005)), the pressure-
dependence of G is found to depend on the shear strain amplitude. The
exponent n of the relationship G ∼ pn increases with increasing γampl.
Ishihara (1995) collected the exponents n measured in several experimental
studies in the literature (Hardin and Richart Jr., 1963; Drnevich et al., 1967;
Silver and Seed, 1971b; Kuribayashi et al., 1975; Kokusho, 1980). In Fig. 111
n is plotted as a function of the shear strain amplitude γampl. Obviously, n
increases with γampl.

Based on the test results presented by Hardin and Drnevich (1972a),
Hardin and Drnevich (1972b) proposed equations to describe the curves
G(γampl)/Gmax and D(γampl):

G

Gmax
=

1

1 + γampl

γr

and
D

Dmax
=

γampl

γr

1 + γampl

γr

(41)

Therein Dmax is an asymptotic value of D at large strain amplitudes. The
reference shear strain γr = τmax/Gmax is defined as shown in Fig. 112a.
Eq. (41) is based on a hyperbolic approximation of the “backbone curve”
τ(γ) observed in a monotonic shear test (see also Fig. 103a). τmax is the
asymptotic value of τ at large strains (shear strength). The normalization
with γr intends to eliminate the influences of mean stress and void ratio.

As an alternative, Hardin and Drnevich (1972b) also proposed more
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flexible relationships:

G

Gmax
=

1

1 + γh
and

D

Dmax
=

γh
1 + γh

(42)

with

γh =
γampl

γr

[
1 + a exp

(
−b

γampl

γr

)]
(43)

wherein a and b are fitting parameters. Another description of the curves
G(γampl)/Gmax is provided by the model of Ramberg and Osgood (1943).
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Figure 112. a) Definition of reference shear strain γr, b) Definition of stress
components σa, σp and σs (Roesler, 1979)

As an alternative to Eq. (38) empirical formulas were formulated with the
effective stress components σa and σp in the directions of the shear wave
propagation and polarization, respectively, instead of the effective mean
stress p (Fig. 112b, e.g. Roesler, 1979; Knox et al., 1982; Bellotti et al.,
1996):

Gmax = A F (e) σa
n σp

m (44)

Roesler (1979) measured the shear wave velocity vS in cubical specimens
(30 × 30 × 30 cm) of dry fine sand. Torsional exciters and receivers were
placed within the specimen. First an isotropic stress was applied using
vacuum. Then an external load was applied in the vertical direction. After
unloading the cube samples were carefully rotated by 90◦ and a loading was
applied in the second direction. Afterwards, the procedure was repeated for
the third direction. Similar measurements at a smaller isotropic pressure
followed. Fig. 113 illustrates the shear wave velocity as a function of the
varied stress component. While vS increases with increasing values of σa and
σp (Fig. 113a,b), the stress component σs acting perpendicular to the plane
of wave propagation obviously does not influence vS (Fig. 113c). Similar
conclusions were drawn by Bellotti et al. (1996) with respect to the P-wave
velocity (Fig. 114a). Therefore, σs has not to be considered in Eq. (44).

Regarding Eq. (44), Gazetas (1991) critically remarked that S-waves may
propagate in all directions away from a dynamically loaded foundation. It
may not be readily evident which are the a and b directions. Thus, the use
of p may be as advantageous.

The influence of stress anisotropy was also tested by Yu and Richart Jr.
(1984) in RC tests (Fig. 114b). The ratio σ1/σ3 of the largest and the
smallest principal stresses was increased along different stress paths, some
of them with triaxial compression and others with triaxial extension. The
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Figure 113. Variation of shear wave velocity vS with an increase of the
stress components σa, σp or σs, respectively (Roesler, 1979)

reduction in the small-strain shear modulus with increasing ratio σ1/σ3 does
not significantly depend on the stress path (Fig. 114b). Only 10 % decrease
was observed up to a stress ratio of σ1/σ3 = 2.5. Therefore, the effect of
a stress anisotropy becomes significant only for stresses near failure. Yu
and Richart Jr. (1984) proposed a reduction factor for Eqs. (39) or (44),
respectively:

F

(
σ1

σ3

)
= 1− a

⎡⎣ σ1

σ3

− 1(
σ1

σ3

)
max

− 1

⎤⎦b

(45)

with (σ1/σ3)max being the stress ratio at failure and with constants a and
b.

Similar to the liquefaction resistance the small-strain stiffness increases
with increasing time (aging effects). Afifi and Woods (1971) and Afifi and
Richart (1973) found an almost linear increase in Gmax value with the log-
arithm of time (Fig. 115a), with a slight increase in the inclination at t ≈
1000 min. The changes of Gmax could not be attributed to compaction.
Since a similar stiffening was measured in tests with an application of a
continuous vibration, the vibration applied for the Gmax-measurements is
not responsible for the increase in Gmax. The curves Gmax(t) can be de-
scribed by

Gmax(t) = Gmax(t0)

[
1 +

(
NG log

(
t

t0

))]
(46)

with t0 being a reference time which is usually chosen as t0 = 1000 min and
with Gmax(t0) being the corresponding shear modulus. According to Afifi
and Woods (1971) and Afifi and Richart (1973), for dry sand the inclination
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p = constant (Yu and Richart Jr., 1984)

factor NG lays within the range 2% < NG < 5%. An increase in Gmax with
time was also measured by Baxter (1999) (Fig. 115b). He found significantly
larger NG-values (NG = 5 to 12 %) for carbonate sands than for silica sands
(NG = 1.1 to 3.5 %). In our own tests a noticeable influence of pressure or
density on the curves Gmax(t)/Gmax(t = 0) can not be observed (Fig. 116a).
The increase in Gmax with time in the RC tests of Li and Yang (1998) was
accompanied by a decrease in the damping ratio (Fig. 116b).
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Figure 115. Increase in Gmax with time under sustained pressure (aging
effects): tests of a) Afifi and Woods (1971) and b) Baxter (1999)

Tatsuoka et al. (1979) performed drained RC tests and torsional shear
tests on specimens of Toyoura sand prepared by different methods (Fig. 117a).
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Figure 116. a) Increase in Gmax (Wichtmann and Triantafyllidis, 2005a)
and b) decrease of damping ratio D with time (Li and Yang, 1998)

Dry specimens were prepared by air pluviation without further compaction
or by spooning in five layers with a subsequent compaction of each layer
using different methods (vibration, tamping, tapping, rodding). Water-
saturated specimens were prepared by spooning the sand into de-aired water
and subsequent compaction by different methods. Partly saturated speci-
mens were obtained by spooning of moist material followed by compaction.
Some special preparation methods including freezing and thawing were also
tested. Fig. 117b shows the dependence of Gmax divided by the void ratio
function F (e) = (2.17−e)2/(1+e) on the isotropic stress for dry specimens.
The Gmax-values are only moderately affected by the specimen preparation
method. The curves G(γampl) and D(γampl) measured for different speci-
men preparation techniques are given in Figs. 118 and 119. The G-values
are divided by a reference value G∗

max which is the small-strain shear modu-
lus calculated from Eq. (38). Obviously, the curves G(γ) and D(γ) are not
significantly influenced by the method of specimen preparation, that means
they are almost independent of the initial fabric of the specimen. This may
also imply the conclusion that fabric changes of the specimens cannot be
detected by Gmax- or vS-measurements (compare the discussion of the de-
termination of the historiotropic variable gA of the HCA model for in-situ
soils, Section 3).

Laboratory tests often show smaller Gmax-values than in-situ measure-
ments (Yokota and Konno, 1985; Kokusho, 1987; Ishihara, 1995; Toki et al.,
1995; Stokoe and Santamarina, 2000). Fig. 120a presents data collected by
Yasuda and Yamaguchi (1985). The ratio of the shear modulus determined
in the laboratory and the shear modulus measured in-situ is plotted versus
the in-situ value. Most of the undisturbed specimens were retrieved by tube
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sampling. The ratio Glab
max/G

in situ
max decreases with increasing stiffness of the

soil.
Kokusho and Tanaka (1994) tested undisturbed specimens of diluvial

gravelly sands obtained by different sampling methods. The Gmax-values
of specimens obtained by tube sampling were generally smaller than those
of specimens recovered by ground freezing. In Figure 120b the laboratory
Gmax-data with Gmax-values measured in-situ using the downhole method
are compared. Even for ground freezing the laboratory Gmax-values were
about 50 % smaller than the respective values measured in the field. There-
fore, both sampling methods seem to delete subtle fabric effects (e.g. aging)
that lead to the higher in-situ stiffness. The disturbance may be larger for
the tube sampling method. However, other researchers (Toki et al., 1995;
Stokoe and Santamarina, 2000) concluded that undisturbed specimens ob-
tained by ground freezing reproduce the in-situ Gmax-values. As outlined
in Section 4.2 the different results may be due to a different treatment of
the frozen samples during thawing.
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Figure 120. Comparison of in situ and laboratory Gmax-data: a) Yasuda
and Yamaguchi (1985), b) Kokusho and Tanaka (1994)

Katayama et al. (1986) compared the curvesG(γampl)/Gmax andD(γampl)
of undisturbed and reconstituted specimens. Undisturbed block samples
were recovered from a sand deposit by means of ground freezing. Hol-
low cylinder specimens were trimmed from the blocks and subjected to
undrained torsional shear. Reconstituted specimens with similar void ra-
tios were prepared from the same material. While the Gmax-values of the
undisturbed specimens were twice as large as those of the reconstituted
samples (Fig. 121a), the curves G(γampl) nearly coincided at large strain
amplitudes γampl > 10−3. The differences in the curves G(γampl)/Gmax

were rather small (Fig. 121b). Furthermore, hardly any differences in the
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Figure 121. Comparison of curves G(γampl)/Gmax of undisturbed and re-
constituted specimens (Katayama et al., 1986)

curves D(γampl) between the undisturbed and the reconstituted samples
could be found. Similar conclusions were drawn by Hatanaka et al. (1988)
from tests on gravelly soils.

The literature is ambiguous concerning the influence of a cyclic or dy-
namic preloading on shear modulus and damping ratio. While some re-
searchers reported on a significant change in G and D, others could hardly
find any influence.

A significant increase in Gmax was measured by Drnevich and Richart
(1970) in hollow cylinder RC tests (Fig. 122a). Specimens were subjected

to a torsional prestraining with a certain amplitude γampl
prestrain. From time to

time the shear strain amplitude was reduced to measure the curves G(γampl)

and D(γampl) in the range γampl ≤ γampl
prestrain. For small prestraining am-

plitudes γampl
prestrain ≈ 10−4 no change in the curves G(γampl) and D(γampl)

occurred. Despite negligible changes in the void ratio, a significant increase
in Gmax was observed for larger prestraining amplitudes. In the test shown
in Fig. 122a this increase was close to a factor 3 during N = 2.2 ·107 cycles.
This stiffening was more pronounced for larger pressures p. In contrast,
the shear stiffness G(γampl

prestrain) did hardly change. The experimental ob-
servations were explained with abrasion effects. Similar results had been
previously obtained by Drnevich et al. (1967).

In contrast, Teachavorasinskun et al. (1994) could not find an influence of
a cyclic preloading on the small-strain stiffness. They studied the change in
Young’s modulus Emax during drained cyclic triaxial tests on air-pluviated
samples of Toyoura and Ticino sand. The cyclic loading was applied with
large strain amplitudes εampl

1 = 10−3. From time to time this loading was
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Figure 122. a) Significant increase in Gmax due to a torsional prestraining
(Drnevich and Richart, 1970), b) Hardly any change of the secant Young’s
modulus during cyclic loading (Teachavorasinskun et al., 1994)

interrupted and Emax was measured at small strain amplitudes εampl
1 <

10−5. Emax did hardly change during 105 cycles (Fig. 122b). In Fig. 122b
the influence of compaction has been considered by dividing Emax by a void
ratio function F (e).

Li et al. (1998), Li and Yang (1998) and Li and Cai (1999) studied the
effect of a dynamic torsional vibration in RC tests on dry, air-pluviated fine
sand. The specimens were prestrained with Nmax cycles of a certain am-
plitude γampl

prestrain. Finally, the curves G(γampl) and D(γampl) were recorded
over the whole range of applicable shear strain amplitudes. While the small
strain shear-modulus Gmax was only moderately increased due to prestrain-
ing, Li and Yang (1998) observed the development of plateaus in the curves

G(γampl) and D(γampl) located around the prestraining amplitude γampl
prestrain

(Fig. 123a). The plateaus became more pronounced with increasing inten-
sity of the prestraining, that is with increasing number of cycles and with
increasing amplitudes. Similar plateaus were also observed in the RC tests
of Wichtmann and Triantafyllidis (2004a) as a consequence of a torsional
prestraining.

Wichtmann and Triantafyllidis (2004a) applied a torsional prestraining

with large shear strain amplitudes (10−3 ≤ γampl
prestrain ≤ 10−2) to hollow

cylinder specimens. Afterwards the specimens were tested in the RC device.
The small-strain shear modulus Gmax was only moderately affected by the
cyclic prestraining (Fig. 123b).

Wichtmann and Triantafyllidis (2004b) performed cyclic triaxial tests
in which the oscillation of the axial stress was interrupted after definite
numbers of cycles in order to measure vP and vS . The average stress σav,
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the stress amplitude qampl and the initial density ID0 were varied from test
to test. Although a significant accumulation of residual strain occurred in
some tests, hardly any changes of the small-strain stiffness could be observed
(Fig. 124). The curves in Fig. 124 were purified from the effect of compaction
by a normalization with the void ratio function F (e). These test results fit
well those reported by Teachavorasinskun et al. (1994) (Fig. 122b).
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Based on RC tests, Iwasaki and Tatsuoka (1977) reported that Gmax is
strongly affected by the grain size distribution curve. For poorly graded
sands (Cu < 1.8, 0.16 mm ≤ d50 ≤ 3.2 mm) without a fines content (i.e. no
grains smaller than d = 0.074 mm) the values of Gmax(e) did not depend
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on d50 (Fig. 125a). Furthermore, Iwasaki and Tatsuoka (1977) could not
observe a significant influence of the grain shape. Similar Gmax-values were
measured for sands with round, subangular and angular grains (Fig. 125a).
Fig. 125b presents tests of Iwasaki and Tatsuoka (1977) on grain size dis-
tribution curves with different coefficients of uniformity and different fines
contents. The measured shear moduli Gmax were normalized by the values
of the poorly-graded sands without a fines content at same values of e and
p. Obviously, Gmax decreases significantly with increasing Cu and with in-
creasing FC. The decrease in Gmax with increasing FC becomes even more
clear from Fig. 126a. However, only one test was performed for most of
the sands and Iwasaki and Tatsuoka (1977) did not extend Eq. (38) by the
influence of Cu or FC.
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Figure 125. a)Gmax does not depend on mean grain size d50 but b) strongly
decreases with increasing coefficient of uniformity Cu and with increasing
fines content FC, RC tests of Iwasaki and Tatsuoka (1977)

RC tests on four different quartz sands have been presented by Wicht-
mann and Triantafyllidis (2005b). For a constant void ratio, significantly
lower Gmax-values were measured for a well-graded material than for three
uniform grain size distribution curves (Fig. 126b). Hardin’s equation, (38)
with its commonly used constants, was found to strongly overestimate the
small-strain shear modulus of well-graded soils (Fig. 126b).

The test results shown in Fig. 126b served as a motivation for a more
detailed experimental study (Wichtmann and Triantafyllidis, 2009a). The
grain size distribution curves shown in Fig. 127 were tested for that pur-
pose. They were linear in the semi-logarithmic scale and had different mean
grain sizes in the range 0.1 mm ≤ d50 ≤ 6 mm and different coefficients of
uniformity in the range 1.5 ≤ Cu ≤ 8.

In Fig. 128a the Gmax-values for the eight materials L1 to L8 (see the
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Figure 127. Grain size distribution curves tested by Wichtmann and Tri-
antafyllidis (2009a)

grain size distribution curves in Fig. 127a) with the same Cu = 1.5 but
with different mean grain sizes 0.1 mm ≤ d50 ≤ 6 mm are compared. For
a given pressure p the data points for the seven sands L1 to L7 lay on a
unique curve, demonstrating that for a constant void ratio the variation in
d50 does not lead to changes in Gmax. The lower values for the gravel L8 are
due to an insufficient interlocking between the tested material and the end
plates which were glued with coarse sand (Martinez, 2007). Therefore, in
accordance with the test results of Iwasaki and Tatsuoka (1977), the mean
grain size needs not to be considered in an empirical equation for Gmax, at
least with respect to the tested range of d50-values.

In Fig. 128b the Gmax-data for the sands with different Cu-values (see
the grain size distribution curves in Fig. 127b) are given for a constant
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Figure 128. Results of RC tests performed by Wichtmann and Triantafyl-
lidis (2009a): a) No influence of mean grain size d50, b) Strong decrease of
Gmax with increasing Cu for a constant void ratio e = 0.55

void ratio e = 0.55. Obviously, Gmax significantly decreases with increasing
coefficient of uniformity. This decrease is similar for different mean grain
sizes. The strong decrease in Gmax with increasing Cu agrees well with the
observations reported by Iwasaki and Tatsuoka (1977).

In order to describe the influence of Cu on Gmax in an empirical equa-
tion, the parameters A, a and n in Eq. (39) have been correlated with Cu

(Fig. 129):

a = 1.94 exp(−0.066 Cu) (47)

n = 0.40 Cu
0.18 (48)

A = 1563 + 3.13 Cu
2.98 (49)

Fig. 130 shows the good agreement of the Gmax-values predicted by Eq. (39)
with (47) to (49) with the measured Gmax-data. A correlation of the small-
strain shear modulus with relative density Dr appeared to be less accurate.
In future, it is planned to extend the correlations (47) to (49) by the influ-
ence of the fines content. Furthermore, the applicability of the correlations
to other shapes of the grain size distribution curve will be inspected.

Usually, larger shear moduli are reported for gravelly soils in comparison
to sand. It may be demonstrated by the curvesK2(γ

ampl) measured by Seed
et al. (1986) for various sands and gravels (Fig. 131a). Another example are
the curves Gmax(e) collected by Ishihara (1995) for different types of mate-
rials (Fig. 131b). Also Hardin and Kalinski (2005) found larger small-strain
shear moduli for different gradations of river gravel compared to Ottawa
sand although the coefficients of uniformity of the gravels were larger.
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In partly saturated soils, the capillary pressure pc causes an increase in
the effective stress and thus an increase in the small-strain shear stiffness
compared with dry or fully saturated soils (Wu et al., 1984; Qian et al.,
1993). The effect can be considered by increasing the effective pressure p
in an empirical equations for Gmax by the capillary pressure pc. Qian et al.
(1993) presented curves of Gmax/G

dry
max versus the degree of saturation Sr

(Fig. 132a) with Gdry
max being the small strain shear modulus of dry spec-

imens. These curves were given for different types of sands (variation of
grain shape, grain size distribution and fines content), void ratios and con-
fining stresses and may also be a useful tool for correcting the laboratory
data to in-situ conditions.
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Figure 132. a) Gmax in dependence of the degree of saturation Sr (Qian
et al., 1993), b) Comparison of different correlations between “dynamic”
and “static” moduli

5.3 Estimation of the Small-Strain Stiffness From Correlations

Correlations of “Static” With “Dynamic” Moduli In engineering
practice, for smaller projects or feasibility studies, the small-strain stiffness
(“dynamic” stiffness) is often estimated by means of a diagram correlating
“dynamic” with “static” stiffness moduli. The “static” values are deter-
mined from either conventional oedometric or triaxial tests. The curve
originally proposed by Alpan (1970) (Fig. 132b) describes a relationship be-
tween “static” and “dynamic” Young’s moduli (Estat, Edyn = Emax). The
static values are obtained from triaxial test data. Alpan (1970) did not
clearly state if the “static” Young’s modulus corresponds with either the
stiffness at first loading (e.g. E50, defined as the inclination of the initial
phase of the curve q(ε1) up to 0.5qmax) or the secant stiffness Eur during
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a large un- and re-loading cycle (see the discussion by Benz and Vermeer
(2007) and Wichtmann and Triantafyllidis (2007)).

The correlation provided by DGGT (2001) (Fig. 132b) has been derived
from the curve of Alpan (1970), probably with the assumption Estat = E50.
The correlation is given in terms of modulus M for oedometric compression.
Upper and lower boundaries are specified. Since no un- and reloading cycles
are mentioned by DGGT (2001), the input parameter Mstat probably cor-
responds with the stiffness during first loading. An alternative correlation
(Fig. 132b) which was derived from the curve of Alpan (1970) using the
assumption Estat = Eur ≈ 3E50 is provided by Benz and Vermeer (2007).

The authors have inspected the different correlations for four sands
with different grain size distribution curves (Wichtmann and Triantafyl-
lidis, 2009b). Oedometric compression and drained monotonic triaxial tests
were performed in order to determine the “static” moduli Mstat and Estat.
RC tests and measurements of the P-wave velocity were performed for
Gdyn = Gmax and Mdyn.

Fig. 133 presents the correlations between Mstat and Mdyn = Mmax.
For the fine to medium coarse sand No. 1, most of the values Mdyn/Mstat

derived from the test data lay within the range specified by DGGT (2001).
For the medium to coarse sand No. 2, the values lay at the upper boundary
of that range. The experimentally obtained data for the coarse sand No. 3
exceeds the range recommended by DGGT (2001). For the well-graded sand
No. 4, the bandwidth specified by DGGT (2001) strongly underestimates the
experimentally obtained ratiosMdyn/Mstat (factor 1.5 to 3). Thus, based on
Fig. 133, the correlation given by DGGT (2001) seems to be applicable only
for poorly-graded fine to medium coarse sands. The small-strain stiffness
of poorly-graded coarse sands and of well-graded sands may be strongly
underestimated by this correlation. The correlation of Benz and Vermeer
(2007) fits somewhat better the experimental data.

The determination of Gdyn from Mstat may be abbreviated using direct
correlations of both quantities (Fig. 134). It is recommended to use the
correlations shown in Fig. 134 since they are based on experimental results
and take into account the grain size distribution curve.

A correlation between Estat and Edyn was also inspected. The assump-
tions Estat = E50 (Fig. 135a) and Estat = Eur ≈ 3E50 (Fig. 135b) have
been compared. In contrast with the data in Fig. 133 the Edyn/Estat-values
of the four different sands do not differ much. While the curve of Alpan
(1970) significantly overestimates the “dynamic” stiffness if Estat = E50 is
assumed (factor 1.5 to 2.5, Fig. 135a), the experimental data fit quite well
the curve of Alpan (1970) in the analysis with Estat = 3E50 (Fig. 135b).
However, the assumption Eur = 3E50 seems quite rough since the factor
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Figure 133. Inspection of correlations between the small-strain (“dy-
namic”) constrained elastic modulus Mdyn = Mmax and the oedometric
(“static”) modulus Mstat for four different sands (Wichtmann and Tri-
antafyllidis, 2009b)

Eur/E50 depends on the axial strain ε1, at which the un- and reloading
cycle is performed, on the distance Δε1 between two subsequent cycles, on
the minimum deviatoric stress qmin during the cycle, on the void ratio e
and on the effective lateral stress σ3 (Wu, 1992) (Fig. 136). If a more ac-
curate correlation between Edyn and Eur is intended, the procedure for the
performance of the un- and reloading cycles has to be clearly defined.

Similar to Fig. 134 forMstat, a direct correlation of the small-strain shear
modulus Gmax = Gdyn with Young’s modulus Estat = E50 from monotonic
triaxial compression tests has been established (Fig. 137). This may be
used for a more simple and accurate estimation of the small-strain stiffness,
compared with the correlation given by DGGT (2001).

Correlations With Sounding Resistances In addition to the empirical
formulas discussed in Section 5.2 and the correlations between “static” and
“dynamic” moduli, the small-strain stiffness can also be estimated from
correlations with sounding resistances. Figure 138a exemplary presents a
correlation between the shear wave velocity and the SPT N -value developed
by Imai and Yoshimura (1970). A collection of different correlations between
Gmax and NSPT has been provided by Ishihara (1995) (Figure 138b).
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List of Symbols

acc accumulation component §3
act acting §4.4
ampl amplitude §1, §3, §4, §5
av average §3, §4, §5.2
cyc cyclic loading conditions §3.4
dyn dynamic loading conditions §5
in situ measured in-situ §5.2
lab determined in the laboratory §5.2
min minimum value §3, §4, §5
max maximum value §3, §4, §5
pl plastic component §3.2
prestrain prestrained §5.2
res resistance §4.4
stat static loading conditions §3.4, §5.3
QSS quasi steady state §4
SS steady state §4
0 initial value §3
�̇ rate §3, §4
�′ effective §4
�∗ deviatoric part §3.2
�̄ mean value over N §3
a parameter §2, §5.2
amax maximum acceleration at the ground surface §4.4
A constant §5.2
b foundation width §3.4
b =

σ′

2 − σ′

3

σ′

1 − σ′

3

§4.3

b parameter §5.2
B Skempton’s B-value §4.2
cN factor §4.4
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Ci i = N1, N2, N3, p, Y, e material constant §3.2
CN = Nc/N0 §4.2
Cr density-dependent correction factor §4.4
CR system compliance ratio §4.2
Cu coefficient of uniformity §3.3, §4.2, §5.2
C2 scaling factor §4.4
d grain diameter §4.2
d diameter of the spheres §5.2
d50 mean grain size §3.3, §4.2, §5.2
D damping ratio §2, §5
Dr relative density §4, §5.2
e void ratio §3, §5
ė compaction rate §3.3
E elastic stiffness §3
E stiffness of a two particles system §5.2
Edyn dynamic Young’s modulus §5.3
Emax small-strain Young’s modulus §5
Estat static Young’s modulus §5.3
Eur secant stiffness during a large un- and re-loading cycle §5.3
E50 stiffness at first loading §5.3
f frequency §1, §4
fi i = 1, 2 frequencies at f = 1/

√
2fR §2

fj j = ampl, N, e, p, Y, π auxiliary function §3
ḟ i
N i = A,B auxiliary function §3.2
fR resonant frequency §2
F parameter §3.2
F axial contact force §5.2
FL safety factor §4.4
F (e) void ratio function §5.2
F

(
σ1

σ1

)
reduction factor §5.2

FC fines content §4.2, §5.2
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g acceleration of gravity §1, §4.4
gA preloading (historiotropic) variable §3
G secant shear modulus §2, §3, §5
Ḡ shear modulus of the sphere material §5.2
Gmax small-strain shear modulus §2, §4.4, §5
Gdry

max small-strain shear modulus of dry specimens §5.2
GN void ratio-normalized small-strain shear modulus §4.4
h height of the specimen §2
ID0 initial density §3.4, §4, §5.2
Ii i = 1, 2, 3 basic invariant of the stress §3.2
IP plasticity index §4.2
J mass moment of inertia of specimen §2
J0 mass moment of inertia of the base mass §2
JL mass moment of inertia of the top mass §2
K bulk modulus §3
Kα correction factor §4.2
Kσ pressure-dependent correction factor §4.2
K0 coefficient of lateral earth pressure §3.4, §4
K2 dimensionless modulus coefficient §5.2
m direction of strain accumulation §3
mv volumetric portion of the flow rule §3
mq deviatoric portion of the flow rule §3
M torsional moment §2
M modulus for oedometric compression §5.3
Mc =

6 sinϕc

3− sinϕc
§3

Me = − 6 sinϕc

3 + sinϕc
§3

Mmax small-strain constrained elastic modulus §2
n constant §5.2
N number of cycles §1, §3, §4
Nc number of cycles prior to liquefaction in a test with sys-

tem compliance
§4.2
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Neq equivalent number of cycles §4.4
NG inclination factor §5.2
NSPT sounding resistance §4.4
NSPT,1 pressure-normalized sounding resistance §4.4
N0 number of cycles prior to liquefaction in a test without

system compliance
§4.2

p = (σ1 + 2σ3)/3 mean stress §2, §3, §5
patm atmospheric pressure §3.3, §4.4, §5.2
pc capillary pressure §5.2
P =

√
3p isomorphic stress invariant §3.3

q = σ1 − σ3 distortional stress §2, §3, §4, §5
qc tip resistance §4.4
qc1 pressure-normalized tip resistance §4.4
Q =

√
2/3q isomorphic stress invariant §3.3

rd reduction factor §4.4
sl settlements of the left foundation §3.4
sr settlements of the right foundation §3.4
s̄ = (sl + sr)/2 §3.4
Δs = |sl − sr| differential settlement §3.4
Sr degree of saturation §4, §5.2
t time §1, §3, §4, §5
t foundation embedding depth §3.4
u displacement §1
u pore water pressure §3, §4
uh horizontal displacement §4.4
vP compression wave velocity §2, §5
vS shear wave velocity §2, §4.4, §5
vS1 pressure-normalized shear wave velocity §4.4
w water content §4.2
wL liquid limit §4.2
We specimen elastic energy under maximum shear strain §2
ΔW area of the Lissajous figure §2
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Y = −I1I2
I3

=
27(3 + η)

(3 + 2η)(3− η)
§3

Ȳ =
Y − 9

Yc − 9
§3

Yc =
9− sin2 ϕc

1− sin2 ϕc

§3.3

z depth §4.4
α static stress ratio §4.2
α angle between the direction of the largest principal stress

and the axis of sedimentation
§4.3

α inclination angle §5.2
αPQ = arctan(Q/P ) polarization angle §3.3
γ shear strain §2, §3, §4, §5
γh =

γampl

γr

[
1 + a exp

(
−b

γampl

γr

)]
§5.2

γr = τmax/Gmax reference shear strain §5.2
γtv threshold shear strain amplitude §4
Δ1 inclination of a log-linear plot of the strain amplitude

versus the number of cycles
§2

ε =
√
(ε1)2 + 2(ε3)2 §3.3

ε strain §3
εacc accumulated strain §3
εampl strain amplitude §1, §3, §5
εq = 2/3 (ε1 − ε3) deviatoric strain §3
εv = ε1 + 2ε3 volumetric strain §3, §4.2
εi i = 1, 2, 3 principal strain §3, §4, §5
ζ amplitude ratio §3.3
η = q/p stress ratio §3.2
θ load angle §3.3
ν Poisson’s ratio §3, §5
ν̄ Poisson’s ratio of the sphere material §5.2
� soil density §2, §5
σ stress in the axial direction §5.2
σ stress §3
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σ∗ transition stress §5.2
σa stress component in the direction of the shear wave prop-

agation
§5.2

σh total horizontal stress §4
σp stress component in the direction of the shear wave po-

larization
§5.2

σs stress component acting perpendicular to the plane of
wave propagation

§5.2

σv total vertical stress §4
σi i = 1, 2, 3 principal stress §2, §3, §4, §5
σ3a outer pressure §2
σ3i inner pressure §2
τ shear stress §2, §3, §4, §5
τoct octahedral shear stress §3.3
ϕc critical friction angle §3
ω angular frequency §1
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In Beiträge zum Workshop: Boden unter fast zyklischer Belastung: Er-
fahrungen und Forschungsergebnisse, Veröffentlichungen des Institutes
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1 Introduction to Constitutive Modelling

Numerical modelling of any problem requires noncontroversial statements of
equilibrium and of kinematics or compatibility (the definition of strain); the
constitutive response which links stress change and strain change is much
more uncertain.

Models that are available in most numerical analysis programs that are
intended for application to geotechnical problems include elastic-perfectly
plastic Mohr-Coulomb, and Cam clay. We will present these models to-
gether with modest developments to improve the range of their applicability.
Engineers are more likely to make use of models which can be clearly seen as
incrementally different from models with which they have some familiarity
than to make use of models which adopt a completely different language.

1.1 Stress and Strain Variables

Some of the presentation of constitutive models will concentrate on con-
ditions that are accessible in the conventional triaxial apparatus. Most data
for calibration come from this apparatus. We choose compressive stresses
and compressive strains to be positive.

The triaxial apparatus provides two degrees of freedom in control of
externally applied stress states. Soils consist of more or less rigid parti-
cles separated by voids. Volume changes are an important feature of the
mechanical response of soils. Undrained deformation implies constant vol-
ume deformation (the compressibility of pore fluid is usually negligible) and
hence pure distortion, change in shape at constant size. We divide soil de-
formations into compression (change of volume) and distortion (change of
shape).

The principle of effective stress proposes that it is the effective stresses
that control the deformation behaviour of the soil. Given a total stress
tensor σij (compression positive) and pore pressure u, the effective stress
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tensor σ′

ij is given by
σ′

ij = σij − uδij (1)

where δij is the Kronecker delta

δij = 1, i = j; δij = 0, i �= j (2)

In any triaxial test we can identify the axial and radial strain incre-
ments δεa and δεr and corresponding axial and radial effective stresses σ′

a

and σ′

r. We choose as a strain increment variable the volumetric strain incre-
ment δεp = δεa + 2δεr and corresponding work conjugate volumetric stress
p′ = (σ′

a +2σ′

r)/3; and the distortional stress q = σa −σr = F/A and corre-
sponding work conjugate distortional strain increment δεq = 2(δεa−δεr)/3.
The work done in a small increment of strain is then:

δW = δWv + δWd = p′δεp + qδεq = σ′

aδεa + 2σ′

rδεr (3)

and the volumetric (change in size) and distortional (change in shape) effects
are clearly separated.

It is also convenient to define a stress ratio η = q/p′ which is equivalent
to a mobilised friction φ′

m. Under conditions of triaxial compression, in
which q > 0 and the axial stress is greater than the radial stress

σ′

a/σ
′

r = (1 + sinφ′

m)/(1− sinφ′

m) = (3 + 2η)/(3− η)

sinφ′

m = (σ′

a − σ′

r)/(σ
′

a + σ′

r) = (3η)/(6 + η)

η = 6 sinφ′

m/(3− sinφ′

m)

(4)

Under conditions of triaxial extension, in which q < 0 and the axial
stress is less than the radial stress

σ′

a/σ
′

r = (1− sinφ′

m)/(1 + sinφ′

m) = (3 + 2η)/(3− η)

sinφ′

m = (σ′

r − σ′

a)/(σ
′

a + σ′

r) = −3η/(6 + η)

η = −6 sinφ′

m/(3 + sinφ′

m)

(5)

The relationships between stress variables and between strain increment
variables can be summarised in matrix form(

p′

q

)
=

(
1
3

2
3

1 −1

)(
σ′

a

σ′

r

)
(6)

(
σ′

a

σ′

r

)
=

(
1 2

3
1 − 1

3

)(
p′

q

)
(7)(

δεp
δεq

)
=

(
1 2
2
3 − 2

3

)(
δεa
δεr

)
(8)
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τ

σ'z

εz εs

Figure 1. Element of soil for development of one dimensional model.

(
δεa
δεr

)
=

(
1
3 1
1
3 − 1

2

)(
δεp
δεq

)
(9)

q

p′
=

3 [(σ′

a/σ
′

r)− 1]

(σ′

a/σ
′

r) + 2
(10)

σ′

a

σ′

r

=
1 + (2/3) (q/p′)

1− (1/3) (q/p′)
(11)

δεp
δεq

=
3 + (3/2) (δεa/δεr)

(δεa/δεr)− 1
(12)

δεa
δεr

=
3 + (δεp/δεq)

(δεp/δεq)− (3/2)
(13)

1.2 Simple Model of Shearing

However, in parallel, we will construct models for the shearing of a sand
(for example) in a shear box. We will idealise a little, but these simple mod-
els can be developed into much more sophisticated models capable of being
used in numerical analysis of complete and realistic prototype geotechnical
problems.

We imagine a ‘simple shear’ element of soil as shown in Fig. 1 which
might be extracted from the central shearing region of a shear box. It is
subjected to a vertical, normal effective stress σ′

z and a shear stress τ . We
expect that there will be vertical strains εz and shear strains εs. The shear
strain produces a change in shape from rectangle to parallelogram. Our
task will be to find general link between changes in the stresses and changes
in the strains.
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a. b.

Figure 2. (a) One-dimensional compression and overconsolidation; (b) stiff-
ness and overconsolidation (drawn for α = 1).

2 Stiffness

If the stress σ′

z on the element in Fig. 1 changes, there will be corresponding
vertical deformation described by one-dimensional stiffness properties that
might have the form:

Eo

σref
= χ

(
σ′

z

σref

)α

(14)

where σref is a reference stress introduced to leave dimensional consistency
between the two sides of (14) and χ and α are soil parameters describ-
ing, respectively, the magnitude of the stiffness and the way in which it
depends on stress level. For any change δσ′

z in vertical effective stress, the
corresponding vertical strain is δεσz :

δεσz =
δσ′

z

Eo
(15)

We will see shortly why we need to distinguish this strain increment with
the superscript σ.

In describing stiffness, we distinguish between normally compressed soils
which are currently experiencing the maximum vertical stress they have
ever experienced, and overconsolidated soils which have been more heavily
loaded in the past (Fig. 2a). The overconsolidation ratio, n = σ′

zmax
/σ′

z, de-
scribes the extent of this prior loading. The rules governing one-dimensional
stiffness for normally compressed and overconsolidated soils are (Fig. 2b):

1. If σ′

z = σ′

zmax
and δσ′

z > 0, then n = 1, α = αnc and χ = χnc

(normally compressed);
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Figure 3. (a) Tangent and secant stiffness; (b) variation of tangent and
secant shear stiffness in monotonic shearing.

2. If δσ′

z < 0, then δn > 0, n ≥ 1, and α = αoc and χ = χoc (overconsol-
idated);

3. If σ′

z < σ′

zmax
and δσ′

z > 0, then n > 1, δn < 0, and α = αoc and
χ = χoc (overconsolidated);

where αnc and αoc, and χnc and χoc are the values of stiffness exponent
and modulus number in (14) appropriate to the normally compressed and
overconsolidated states, respectively. Typically αnc ≈ αoc. The distinction
between normally consolidated and overconsolidated can be seen as a dis-
tinction between elastic+plastic (partially irrecoverable) and purely elastic
(recoverable) response.

Stiffness variation in a monotonic shearing test, as opposed to this con-
fined compression, is typically presented (Fig. 3) in a plot of shear modulus
(usually, regrettably, secant modulus) against strain, with the strain plotted
on a logarithmic scale because much of the initial variation of stiffness oc-
curs at very small strains. Tangent stiffness Gt = dτ/dγ varies with strain
much more rapidly than secant stiffness Gs = τ/γ (Fig. 3)—and if the
stress:strain response reveals strain softening after some peak then the tan-
gent modulus will actually become negative. Secant stiffness tells us about
the past—tangent stiffness tells us about the present and the very short-
term future. Our concern in modelling is to generate a tangent stiffness
relationship for our soil.

Soil elements in geotechnical systems will be subjected to nonmonotonic
paths following long term geological and shorter term construction histo-
ries and we will expect to use the laboratory testing possibilities that are
available to us to explore the incremental effects of stress changes in a very
general way. We need to have a coherent strategy for the conduct of this
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Figure 4. (a) Typical irreversible stress:strain response and (b) typical
modulus variation for soil.

testing.
A comparison of the stress:strain response implied by a linear elastic

description of soil behaviour with the actual stress:strain response of a typ-
ical soil shows that there are many features of soil response that the simple
model is unable to capture (Fig. 4). In particular, it is clear that most soils
show nonlinear stress:strain relationships with the stiffness falling from a
high initial value. If a soil is unloaded from some intermediate, prefailure
condition then it will not recover its initial state but will be left with perma-
nent, irrecoverable deformation—which we will call plastic deformation to
distinguish it from the recoverable, elastic elements of deformation. During
this unloading process the tangent stiffness increases initially, typically to
a value higher than the initial stiffness and then falls—a similar pattern is
seen on reloading (Fig. 4).

One way of illustrating the link between strain increments and stress
increments which can be useful both for planning and interpreting pro-
grammes of testing is through the generation of stress response envelopes,
introduced by Gudehus (1979) as a way of illustrating the nature of the
characters of response predicted by different classes of constitutive model.
Thus, for axially symmetric states of stress attainable in the conventional
triaxial apparatus, envelopes can be shown in terms of volumetric (mean ef-
fective) stress and distortional stress changes resulting from the application
of increments of volumetric and distortional strain. If, from a given initial
stress state, a series of strain probes of identical normalised magnitude is
imposed, then the resulting envelope of stress responses provides a visual
indication of the generalised stiffness of the soil. An example is shown in
Fig. 5. The strain increments are defined in terms of volumetric strain δεp
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Figure 5. (a) Rosette of strain probes and (b) resulting stress response
envelope for axisymmetric state of stress.

and distortional strain δεq. The rosette of strain increments of standard
length is shown in Fig. 5a. A solid curve joins the resulting stress incre-
ments from the common initial stress, presented in terms of mean effective
stress p′ and distortional stress q, in Fig. 5b). In this figure, at each point
on the stress response envelope a little line indicates the direction of the
corresponding strain probe from Fig. 5a.

Near failure we expect the stiffness for continued loading—increased dis-
tortional strain—to be considerably lower than for unloading—reversal of
distortional strain—and the stress response envelope will be flattened to-
wards the loading direction (A in Fig. 6). At lower stress ratios the envelope
is likely to be more rounded (B in Fig. 6) with the generalised stiffness less
dramatically influenced by the direction of the probe though still indicating
lower stiffness for continued loading, higher stiffness for reversal of loading.
There may be some partially unloaded states for which the response is much
more independent of loading direction (C in Fig. 6). For soil in a state which
tends to lead to strain softening (probably at high stress ratios) the initial
stress state may lie outwith the response envelope (D in Fig. 6)—this is an
indication that all strain increments imposed on our soil element will lead
to reduction of stress ratio.

The shape of the response envelope and the location of the initial stress
state relative to the response envelope will vary with history. Soil stiff-
ness falls with monotonically increasing strain. Instrumentation does not
permit us to determine response envelopes for ‘zero’ amplitude of strain
increments. However, it is instructive, in gathering data to inspire our con-
stitutive modelling, to look at response envelopes determined for different,
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Figure 6. Schematic expected history dependence of stress response en-
velopes (points + indicate initial stress states).

finite, magnitudes of strain increment from a given initial stress state.
Stress response envelopes from true triaxial tests on kaolin are shown in

a π-plane deviatoric view of stress space in Fig. 7 for two different initial
histories—one (Fig. 7a) has isotropic compression to O followed by shearing
(at constant mean effective stress) to A; the other (Fig. 7b) has history OA
followed by unloading back to O. The response envelopes are drawn for
different values of a distortional strain

ε =
1√
3

√[
(εy − εz)

2
+ (εz − εx)

2
+ (εx − εy)

2
]

(16)

which is proportional to the second invariant of the strain deviator tensor.
The small strain envelopes in each case are closely linked to the recent
stress history, OA or OAO respectively. However, as the strain magnitudes
increase, the detail of the starting stress state seems to become largely
irrelevant—by the 10% envelope, memory of what has gone before has been
somewhat swept out.

Stress response envelopes from true triaxial tests on Leighton Buzzard
sand are shown in Fig. 8 (data from Sture et al., 1988. These tests were
performed in a cubical cell true triaxial apparatus in which the stresses were
imposed through flexible boundary cushions: the magnitudes of strains that
can be imposed while still retaining deformational uniformity are limited.
Comparing deviatoric histories (imposed at constant mean stress) ABC,
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Figure 7. Schematic deviatoric stress response envelopes from true triaxial
probing of kaolin with deviatoric history (a) OA and (b) OAO (inspired by
Muir Wood, 2004).
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Figure 8. Schematic stress response envelopes from true triaxial probing
of Leighton Buzzard sand with deviatoric history (a) ABC and (b) ABD
(inspired by data from Sture et al., 1988).

ABD the comments made previously are reinforced. Failure is lurking in
the π-plane at some finite distance from the isotropic stress axis, A, so it
is to be expected that the several stress response envelopes will be closely
packed together there.

The picture is always the same. There is a strongly kinematic element
to the small strain response envelopes—they are carried around intimately
with the most recent stress history. The larger the strain magnitude the less
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Figure 9. Failure criteria in π-plane deviatoric view of principal stress space
(TC: triaxial compression; TE: triaxial extension).

the location of the envelope seems to care about the recent stress history
and the more it is aware of other constraints on soil response—such as the
limitations that failure criteria might impose.

3 Strength

As the shear stress τ on the element in Fig. 1 is increased, we expect even-
tually to reach the limit of the shear stress that can be supported—the
strength of the soil. Because most of the soils with which we are dealing
are, at least eventually, unbonded, we present strength as a purely frictional
phenomenon: the strength is proportional to the stress level (p′, triaxial) or
normal stress (σ′

z , shear box, Fig 1). This is described by a Mohr-Coulomb
failure criterion with angle of shearing resistance φ′:

τmax = σ′

z tanφ
′ (17)

In the π-plane view of principal stress space, the Mohr-Coulomb failure
criterion plots as an irregular hexagon for a constant mean stress section
(one 60◦ segment is shown in Fig. 9). This suggests immediately that a
model generalisation based on the second stress invariant J2 will not be
particularly satisfactory for soils. In fact, failure data for sand tend to lie
somewhere between the Mohr-Coulomb hexagon and the J2 circle. Two
alternative failure criteria have been quite widely used to better describe
the deviatoric failure conditions.
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The Matsuoka-Nakai criterion (Matsuoka and Nakai, 2001) states that

I1I2
I3

= constant (18)

where I1, I2 and I3 are the three invariants of the stress tensor. This gives a
curved failure locus which circumscribes the Mohr-Coulomb hexagon, pass-
ing through the vertices of that hexagon.

On the other hand, many experimental data suggest that the frictional
strength of sands in triaxial extension is in fact slightly higher than that in
triaxial compression. Lade’s (Lade and Duncan, 1975) failure criterion is
expressed as

I31
I3

= constant (19)

This is also plotted in Fig. 9. Evidently the common characteristic of both
these failure criteria is that, unlike the Mohr-Coulomb criterion, they in-
clude the intermediate principal stress. Different sands, tested in different
laboratory devices, show strength data which favour one or other of these
criteria. Both are in agreement in proposing that, for states of stress lying
between triaxial compression and triaxial extension, the available friction is
somewhat higher—perhaps at its maximum as much as 10% higher—than
that in triaxial compression. Plane strain conditions tend to fall in this
intermediate region: plane strain frictional strengths will usually be under-
estimated if the angle of shearing resistance is determined using triaxial
compression tests.

4 Elastic-Perfectly Plastic Models

Most soils, if sheared to sufficiently large strains, reach a state of continu-
ing shearing with no further change in stresses, zero incremental or tangent
stiffness, at large strains. This type of behaviour, in which the tangen-
tial stiffness has fallen to zero, is described as perfect plasticity and we can
describe general and particular (Mohr-Coulomb) elastic-perfectly plastic de-
scriptions of soil response (Fig. 10).

It is assumed in these soil models that the strain increments that accom-
pany any change in stress can be divided into elastic (e) (recoverable) and
plastic (p) (irrecoverable) parts

δε = δεe + δεp (20)

This division of strain clearly reflects the observation that removal of loads
from a sheared soil sample in general leaves the sample with some permanent
changes in shape and size (Fig 4).
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Figure 10. Elastic-perfectly plastic model: (a) stress:strain response and
(b) modulus variation.

The strain increment tensor is thought of here as a six element vector
of cartesian strain increment components since in this form the presenta-
tion and programming of stiffness relationships involves nothing more than
straightforward matrix multiplication and manipulation. In many applica-
tions it will be a subset of this vector that will be of interest.

The elastic strain increment δεe occurs whenever there is any change in
stress δσ (where the stress is also thought of as a six dimensional vector of
cartesian components).

δσ = Dδεe (21)

where D is the elastic stiffness matrix. The first ingredient of the model is
therefore a description of the elastic behaviour which may be isotropic or
anisotropic as appropriate.

In the elastic-perfectly plastic model there is a region of stress space
which can be reached elastically, without incurring any irrecoverable defor-
mations (Fig. 11). However, as soon as the boundary of this elastic region is
reached then the material yields (or fails) at constant stress. The boundary
of the elastic region is called a yield surface (Fig. 11) and is mathematically
described by a yield function: this is the second ingredient of the model.

f(σ) = 0 (22)
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stress
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yield = failure
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Figure 11. Elastic-perfectly plastic model: yield surface separating elastic
and inaccessible regions of stress space.

The plastic strain increment δεp (in (20)) occurs only when the stress
state lies on—and remains on—the yield surface during the load increment
so that

f(σ) = 0; δf =
∂f

∂σ

T

δσ = 0 (23)

where T indicates the transpose of the vector. This relation is known as the
consistency condition.

In order to be able to calculate the plastic deformations we make the
assumption that there exists a plastic potential function g(σ) which can be
evaluated at the current stress state such that the plastic strain increment
is given by

δεp = Λ̇
∂g

∂σ
(24)

where Λ̇ is a scalar multiplier whose magnitude is essentially arbitrary since
this expression merely defines the mechanism of plastic deformation—the
ratio of the several components of plastic deformation. It is thus only the
gradient of the plastic potential function g(σ) that is required, the actual
value of the function is not relevant.

Combination of (20), (21) and (24) gives

δσ = Dδε− Λ̇D
∂g

∂σ
(25)

and combination of (25) with (23) allows us to determine Λ̇

Λ̇ =
∂f
∂σ

T
Dδε

∂f
∂σ

T
D

∂g
∂σ

(26)
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and hence generate an expression for the elastic-plastic stiffness matrix D
ep

giving δσ as a function of δε:

δσ =

[
D − D

∂g
∂σ

∂f
∂σ

T
D

∂f
∂σ

T
D

∂g
∂σ

]
δε = D

epδε (27)

from which the stress increment can be calculated from any total strain
increment that is causing yield. This stiffness relationship is written with
two terms. We do not know a priori whether the response of the soil will be
elastic (lying entirely within the yield locus) or elastic-plastic (lying on the
yield locus). We can start by assuming purely elastic response and predict-
ing the stress increment using only the elastic stiffness, δσ = Dδε. If the
resulting stress state lies outside the yield locus then the elastic assumption
was incorrect and the elastic predicted stress increment needs to be ‘cor-
rected’ back to the yield locus using the second part of the right hand side of
(27). Such a two-stage process of prediction and correction is an inevitable
part of the numerical implementation of any elastic-plastic model.

Note that we will expect that we can always deduce increments in stress
from imposed increments in strain (the operation indicated in (27)) but that
the reverse operation will not always be possible if our current state of stress
is already on the yield/failure boundary of the elastic region (Fig. 11).

4.1 Elastic-Perfectly Plastic Mohr-Coulomb Model

To demonstrate how this final expression can be used we can look at the
special case of the elastic-perfectly plastic Mohr-Coulomb soil model. We
will apply the model to axisymmetric conditions.

First we define the elastic properties using an isotropic elastic model:

D =

(
K 0
0 3G

)
(28)

Next we define the yield function as (Fig. 12a)

f(σ) = f(p′, q) = q −Mp′ (29)

If f(p′, q) < 0 the soil is behaving elastically; if f(p′, q) = 0 the soil is
yielding (failing) and generating plastic deformations. To have f(p′, q) > 0
is impossible: this defines an inaccessible region of the (p′, q) stress plane
(Fig. 12a). The value of the soil property M can be related to the angle of
shearing resistance φ′ of the soil in triaxial compression:

M =
6 sinφ′

3− sinφ′
(30)
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Figure 12. Elastic-perfectly plastic Mohr-Coulombmodel: (a) yield/failure
locus; (b) plastic potentials.

Most soils develop significant irrecoverable volume changes even when
they are subjected only to changes in shear stress. We require some con-
straint on the plastic deformations in the form of a flow rule which defines
the plastic deformation mechanism at the current stress state. We define a
plastic potential function (Figure12b)

g(σ) = g(p′, q) = q −M∗p′ + k = 0 (31)

where k is an arbitrary variable to allow the plastic potential function to
be defined at the current state of stress and M∗ is another soil property.
The plastic strain increments are given by normality to the plastic potential
function at the current state of stress (Fig. 12b)(

δεpp
δεpq

)
= Λ̇

(
∂g/∂p′

∂g/∂q

)
= Λ̇

( −M∗

1

)
(32)

where the scalar multiplier Λ̇ indicates the magnitude of the plastic strain
increments. The ratio of the two components of plastic strain is:

δεpp
δεpq

= −M∗ (33)

For M∗ = 0 plastic deformation occurs at constant volume. Soils that
contract when they are sheared plastically have negative angles of dilation:
M∗ < 0 (Fig. 13c); soils that expand have positive angles of dilation: M∗ >
0 (Fig. 13c). For all real soils M∗ < M . A special (though physically
unrealistic) case is obtained when M∗ = M .
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Figure 13. Elastic-perfectly plastic Mohr-Coulomb model: (a) stress:strain
response; (b) constant p′ effective stress path; (c) volumetric strain, depen-
dence on M∗.

The energy that is dissipated during an increment of plastic deformation
is

δW p = σ
T δεp = p′δεpp + qδεpq (34)

Since the soil is yielding the stresses are related by

q = Mp′ (35)

and the plastic strain increments are related by (33). The plastic energy
thus becomes

δW p = (M −M∗)p′δεpq (36)

It is evident that if M∗ = M there is no plastic energy dissipation which
seems likely to provide an unsatisfactory description of soil behaviour.

The complete elastic-plastic stiffness matrix (27) for this perfectly plastic
model can now be generated:

D
ep =

[(
K 0
0 3G

)
− 1

KMM∗ + 3G

(
MM∗K2 −3M∗GK
−3MGK 9G2

)]
(37)

The second term in (37) is only included if the soil is yielding. The link
between stress increments and strain increments is then(

δp′

δq

)
=

3GK

KMM∗ + 3G

(
1 M∗

M MM∗

)(
δεp
δεq

)
(38)



www.manaraa.com

Constitutive Modelling 153

The elastic-plastic stiffness matrix is in general asymmetric unless M∗ =
M which, as has been shown, is physically unreasonable. However, certain
numerical analysis programs require the stiffness matrix to be symmetric for
solution purposes and it is for these programs that the assumption M∗ = M
is often forced upon the user—or else some numerical subterfuge is needed
to overcome the limitation of the program.

Although it is often easier to think of stress changes producing changes in
strain—and physical considerations of the behaviour of soils often encourage
us to move in this direction—if we look at the diagram of the (p′, q) stress
plane (Fig. 12a) we can see that this will not provide a secure route for
analysis because a large part of the stress plane is in fact forbidden territory.
On the other hand, working from strain increments to stress increments
carries no such problem: all strain increments are permitted even when the
current stress state sits on the yield (failure) locus. Some of these strain
increments will produce purely elastic changes in stress which take the stress
state away from yield; others will force the stress state to move up or down
along the yield (failure) locus in such a way that the elastic component of
the strain caused by the change in stress uses up that part of the total strain
increment which cannot be ascribed to the plastic strain mechanism given
by (33) or (24).

For each of the strain increments of a rosette of increments of similar
magnitude but different direction we can use the elastic-plastic stiffness
form of the model ((28) or (37) depending on whether the soil is responding
elastically or elastoplastically) to calculate the stress increment response
(Fig. 14). The stress response envelope thus consists of two parts.

If the strain increment can be supported by elastic unloading then the
stress increment is directed away from the yield locus. For these increments
the response envelope takes the form of half of an ellipse (Fig. 15). If the
strain increment requires the soil to yield then the stress state has to lie on
the yield locus—all plastic stress states are, in this perfectly plastic model,
confined to this one line. For these increments the stress response envelope
consists of a straight line tangent to (in this case coincident with) the yield
locus at the given initial stress (Fig. 15).

Two limits may be noted. If the ratio of strain components is given by
(33) then the stresses remain unchanged as the soil yields:

(
δεp
δεq

)
∝
( −M∗

1

)
→

(
δp′

δq

)
=

(
0
0

)
(39)

It is of course possible for the stress state to move along the yield locus
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Figure 14. Elastic-perfectly plastic Mohr-Coulomb model: stress response
envelope (calculated with M = 1.2, M∗ = 0.2 and initial stresses p′ = 100,
q = Mp′ = 120).
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Figure 15. Elastic-perfectly plastic Mohr-Coulombmodel: elastic and plas-
tic sections of stress response envelope.
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Figure 16. Elastic-perfectly plastic Mohr-Coulomb model compared with
typical soil response in conventional drained triaxial compression test.

purely elastically without incurring plastic deformation. In this case(
δεp
δεq

)
∝
(

1/K
M/3G

)
(40)

and this ratio defines the boundary of elastically attainable strain states in
the corresponding strain increment plane. It should be clear from the stress
response envelope in Fig. 14 that, not only is there a part of the stress plane
that is inaccessible (anywhere implying a value of q/p′ > M), even for stress
changes which lie along the boundary of the elastic region (δq/δp′ = M)
there is an infinite number of possible causative strain increments and we
cannot even tell whether the soil is behaving elastoplastically or purely
elastically. The ambiguity in trying to work from stress increments to strain
increments is emphasised.

A particular case is given by undrained constant volume shearing for
which(

δεp
δεq

)
∝
(

0
1

)
→

(
δp′

δq

)
∝ 3GKM∗

KMM∗ + 3G

(
1
M

)
(41)

and the stress path ascends or descends the line q = Mp′ for M∗ > 0
(Fig. 14) or M∗ < 0 respectively (assuming that 3G+KMM∗ > 0 always).

The elastic-perfectly plastic model forces a bilinear description of re-
sponse which leads to inevitable subjectivity in choosing values of stiffness,
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Figure 17. (a) Shear load:displacement response and (b) volume changes
in direct shear test on Ottawa sand; (c) stress-dilatancy correlation (data
from Taylor (1948).)

strength and dilatancy properties to match real soil test data (Fig. 16).
Elastic-perfectly plastic models are widely used because of their simplicity.
The Mohr-Coulomb model is available in every computer program that is se-
riously intended for numerical analysis of geotechnical problems. It requires
definition of elastic properties—of which there will be at least two; and of
some failure property—for example, a limiting angle of shearing resistance
for a frictional model to be used for description of drained soil conditions
or a limiting shear stress for a cohesive model to be used for description of
undrained soil conditions; together with some statement about the volume
changes that accompany failure—for example, an angle of dilation. There
is obviously need for care in the selection of the elastic properties. Not all
programs give the freedom to select angles of dilation which are different
from the angle of shearing resistance.

5 Dilatancy

In presenting results of shear box tests, we can observe the volume changes
that occur in sands as they are sheared (Fig. 17) and relate this dilatancy to
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Figure 18. Shear box tests on sand: stress-dilatancy relationship.

the way in which granular materials are composed of rather rigid individual
particles. Fig. 17c shows an interpretation of the results in Fig. 17a, b: there
is a general correlation between the current slope of the volume change or
vertical strain plots (Fig. 17b) and the current mobilised friction (Fig. 17a).
The higher the mobilised friction, the more dramatic the rate of volume
increase with continued shearing. In fact, a broad first order stress-dilatancy
relationship could be proposed:

δz

δx
= ζD(Rc −R) (42)

which tells us that the ratio of normal movement to shear movement is
proportional to the difference between the current mobilised strength, R =
τ/σ′

z , and the large deformation strength Rc, with ζD being introduced as a
soil parameter. For low mobilised strength, R < Rc, the soil compresses as
it is sheared, δz > 0; for high mobilised strength, R > Rc, the soil expands
or dilates as it is sheared, δz < 0.

We need to convert this relationship between displacements into a link
between strain components for our soil element (Fig. 1), and we will write
an exactly equivalent relationship (Fig. 18):

δετz
δεs

= ζD(Rc −R) (43)

where the superscript τ in δετz reminds us that this is a second, distinct,
route to the generation of vertical strains. The vertical strain can change
either through change in vertical effective stress, δεσz (15), or through shear-
induced dilatancy, δετz , (43), or both. The total vertical strain increment is
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the sum of these two components:

δεz = δεσz + δετz (44)

6 Critical States

Casagrande (1936) introduced the notion of a critical void ratio to which
dense samples would expand and loose samples contract as they were sheared.
In general it is found that the critical void ratio varies with stress level lead-
ing to a critical void ratio line is more appropriate (Wroth, 1958; Roscoe
et al., 1958). The term critical states has been used to encapsulate all as-
pects of this limiting condition. State has the logical potential to expand to
include other changing aspects of the soil that can be objectively measured:
in particular, void ratio provides only a very basic indication of the current
fabric of the soil.

The concept of limiting critical states has led to the development of crit-
ical state soil mechanics (Schofield and Wroth, 1968; Muir Wood, 1990). In
its weak form (Fig. 19) it proposes a discipline for the presentation, interpre-
tation and understanding of many aspects of the mechanical behaviour of
soils—in particular bringing together treatment of compression and strength
with density as a linking quantity. But density is a very incomplete indica-
tor of the elements of state that are encapsulated within the fabric of the soil
so it is not really surprising that this simple treatment should break down.
In fact it is a testament to its power that this simple three part definition
of state in terms of stresses and density should have demonstrated a first
order usefulness.

The direct shear box being obviously inadequate for serious constitutive
data gathering, Roscoe and his colleagues worked on the development of a
series of simple shear apparatus—striving to capture in a single device the
behaviour of the soil from the central shearing region of the shear box. These
designs reached their apogee with Stroud’s Simple Shear Apparatus Mark
VII (Stroud, 1971). With the parallel use of radiography at Cambridge
it was possible to see inside the samples and discover the extent to which
the goal of internal homogeneity had indeed been attained. The soil being
tested was 14/25 Leighton Buzzard sand with a rather narrow grading and
a particle size d50 ≈ 0.8mm. Radiographs produced by Bassett (1967)
(Fig. 20) show the problem.

The radiograph detects variations in density through the absorption of
X-rays so that, in these negative pictures, paler areas represent regions
of lower density. In these areas the originally dense sample has dilated
as it is sheared. With an apparatus which is 40mm high, the pattern of
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Figure 19. Critical state soil mechanics, weak form: (a) strength and density;
(b) stress level and density; (c) strength.

variation of zones of dilation is evidently quite complex—and related to
the deficiencies of the boundary conditions of the simple shear apparatus.
As the height is reduced the pattern becomes simpler and with the lowest
apparatus—20mm high—one can more or less say that there is just one
dilation band, which occupies much (but not all) of the height of the sample.
That this conclusion is particle size dependent is clear in Fig. 21 which shows
sketches from radiographs for 14/25 Leighton Buzzard sand (Fig. 21a) and
for various stages of the repeated reversal of shearing of a fine sand with
particle size d50 ≈ 0.3mm (Fig. 21b, c). Stroud shows that the void ratio
in the dilating region appears to be tending towards a constant value as
shearing proceeds—but the apparatus is only capable of imposing a shear
strain of some 50%.
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Figure 20. Density variations within simple shear tests on 14/25 Leighton Buz-
zard sand: apparatus height (a) 40mm; (b) 30mm; (c) 20mm (pale regions indicate
density decrease)(after Bassett, 1967).

Releasing the strain constraint requires some modification such as that
used by Vardoulakis (1978) (Fig. 22) using a plane strain biaxial configura-
tion, but with the possibility of relative horizontal movement between the
end platens provided by means of a lateral bearing system. There comes a
point when the sample wants to behave more like a thin shear zone and an
inclined band forms as a localisation within the sample. Shearing continues
on this band leaving the zones that it separates more or less undeforming.
Deduction of the shearing conditions in the localised region shows that, pos-
sibly, a critical state is being neared: the mobilised friction on the shear band
becomes somewhat constant and the dilation, while still fluctuating, is on
average around zero. The particle size of this sand is around d50 ≈ 0.3mm
and such localised shear bands typically have a thickness of around 10d50
so that the relative displacement indicated on the shear band corresponds
to a shear strain of the order of 100% at the point when stress and density
have more or less stopped changing.

The chains or columns of particles which are taking most of the load tend
to be aligned with the direction of the major principal stress (Fig. 23). Such
a strongly loaded pile of particles looks unstable and is indeed susceptible
to buckling with the forces provided by the adjacent particles unable to
do much to prevent the collapse. Buckling leads to rearrangement and
irrecoverable deformation. Buckling of such a column will be exacerbated
by the application of lateral forces at the ends—any attempt by the major
principal stress to rotate will be very damaging. So on the one hand we can
expect that testing with fixed principal axes in triaxial, biaxial, true triaxial
apparatus will only explore a rather stable region of constitutive response,
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Figure 21. (a) Schematic diagram of simple shear apparatus (sample height
20mm); (b) regions of density decrease in simple shear test on sand with d50 =
0.85mm (original radiograph from Stroud (1971)); (c)-(e) regions of density de-
crease in simple shear test on sand with d50 = 0.2mm (original radiographs from
Budhu (1979)) (Muir Wood, 2002).

and on the other hand if we see critical state conditions as being concerned
with shearing of a band of particles then we can expect this to be a process
which is particularly disruptive for the local fabric of the soil.

If stress becomes a difficult concept at the scale of individual particles,
aspects of fabric of the soil are also very variable. The repeated buckling
and reforming of columns of particles in the shear band which is trying
to reach an asymptotic critical state leaves very large variations in void
ratio (Fig. 24). There are certainly local fluctuations even if globally the
density can be regarded as stationary (Kuhn, 2005) One has to conclude
that heterogeneity is an inevitable property of granular materials (Fig. 25)
and that tests and reporting of results only have meaning when the scale of
observation is large enough relative not just to individual particles but to
the patterns that form (Muir Wood, 2002; Kuhn, 2005; Muir Wood, 2006).
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Figure 22. Biaxial plane strain test on Karlsruhe sand: (a) schematic illustration
of mechanism to allow free formation of shear band; (b) mobilised friction and
displacement on shear band; (c) dilatancy of shear band (after Vardoulakis, 1978).
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Figure 23. Force chains in model of particle assembly (Maeda, personal com-
munication).

a.

b.

shear band

Figure 24. Shear band in assembly of elliptical photoelastic discs: (a) force
chains and voids; (b) buckling and rotation of columns in shear band (from Oda
and Kazama, 1998).
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a. shear strains b. volumetric strains

Figure 25. Variations of (a) shear strain and (b) volumetric strain in shearing
of two dimensional rod model in 1γ2ε apparatus (Hall et al., 2010).
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Figure 26. Gradings of circular discs used in DEM analyses (Muir Wood and
Maeda, 2008).
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Figure 27. Shearing of two-dimensional assembly of discs with different grad-
ings: (a) frequency of occurrence of coordination number; (b) variation of average
coordination number with mean stress for sample with RD = dmax/dmin = 2
(Muir Wood and Maeda, 2008).

The coordination number (the number of contacts per particle) provides
some indication of the current fabric of the material. Some DEM simulations
have been reported by Muir Wood and Maeda (2008) for the monotonic
biaxial shearing of assemblies of discs of different sizes. The particle size
distributions are shown in Fig. 26 and are characterised by RD = dmax/dmin

where dmax and dmin are the maximum and minimum particle sizes. The
spread of coordination number in samples with different gradings at the
start of shearing is shown in Fig. 27a. While the infrequent occurrence of
coordination numbers as high as 16 is observed for the broadest grading
studied (RD = 20) the dominant elements of the distribution of number of
contacts are (surprisingly?) insensitive to the grading. The most frequent
number of contacts is generally 4. There is a hint of a reduction towards
3 for the broadest grading and a slight increase in the number of particles
with 1 contact or fewer. A partial view of the evolution of fabric during
the tests is then shown in a plot of average coordination number with mean
stress (Fig. 27b).

A further experimental observation relating to conditions at the criti-
cal state comes from tests performed by Gajo (quoted in Muir Wood et al.,
2001) looking at the slope in effective stress terms δp′/δq of small undrained
unload-reload cycles performed at various stages during drained tests on
Hostun sand. For an isotropic elastic soil this ratio should be zero—there is
no change in mean effective stress. Departure from zero indicates some sort
of elastic anisotropy. One interpretation, following Graham and Houlsby
(1983), simplifies the description of transverse isotropic elasticity in a spe-
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Figure 28. Triaxial test on Hostun sand: (a) stiffness anisotropy deduced from
slope of undrained unload-reload cycle in effective stress plane; (b) stress ratio
and strain; (b) deduced modulus ratio and strain; (c) modulus ratio and stress
ratio (data from Gajo reported by Muir Wood et al., 2001).

cial way which implies a relationship between the slope δp′/δq and the
ratio of horizontal to vertical Young’s moduli Eh/Ev and results have been
plotted using this implicit description in Fig. 28. The link between de-
duced modulus ratio and stress ratio in a test where the drained stress path
had excursions into extension as well as compression is moderately well de-
fined. At large strains, where one would expect critical state conditions
to have been neared, the modulus ratio approaches zero, and the slope
of the undrained effective stress path approaches δp′/δq = 1/3 implying
no change in radial effective stress. Using a more complete description of
transverse isotropic elasticity one would interpret this limiting stress ratio
as an indication that the Poisson’s ratio linking the horizontal and vertical
strain increments νvh = 1/2. It seems that this limiting elastic anisotropy
is also attained at a modest strain level corresponding to the attainment of
a steady mobilised friction. Whatever the detailed nature of this evolution
of elastic anisotropy, the implied elastic-plastic coupling has an important
influence on the occurrence of localisation in sands (Gajo et al., 2007) and it
is probably within the localised shearing zone that critical state conditions



www.manaraa.com

Constitutive Modelling 167

specific 

volume 

v

vertical stress σ'z

failure line: v = vf

vf

ψ=v - vf

loose: v > vf

loose: v > vf
dense: v < vf

dense: v < vf

a. b.

v - vf

Rc

current 

strength: 

RpζR

Figure 29. Failure line: (a) combinations of specific volume and normal
stress; (b) current strength dependent on current specific volume.

will actually be reached.

7 State Parameter

We define the eventual relationship between specific volume and normal
effective stress (Fig. 29a) by a simple relationship:

vf = v̆ +Δv exp
[−(σ′

z/σrc)
β
]

(45)

No matter what the detailed shape of the critical state line, we can define
a state parameter ψ (Fig. 29)

ψ = v − vf (46)

as an indication of the distance of the current specific volume v of our soil
away from the critical state specific volume vf at the current stress level.

The phenomenon of dilatancy is a necessary part of the process by which
a soil manages to move its density from its initial value to the value appro-
priate to the development of failure conditions under the current normal
effective stress (Fig 30).

8 Strength and State Parameter

Peak strength is not a constant but is dependent on the current state of
the soil. We expect that, at a given stress level, the denser the soil the
higher will be the strength. Data from sands suggest that it is useful to link
peak strength with state parameter ψ (46) (Fig. 29) in order to introduce
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Figure 30. (a) Drained shearing with change of volume to failure; (b)
undrained shearing with change in vertical effective stress to failure.
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Figure 31. Dependence of (a) peak strength and (b) peak dilatancy of
sands on state parameter (inspired by Been and Jefferies, 1986).

a link with stress level as well as with density. As the state parameter ψ
becomes more negative the peak strength increases (Fig. 31a)—but equally,
if we shear the soil to large strains, then its strength tends to the ultimate
critical state strength as the state parameter rises to zero. The peak angle
of dilation also correlates well with state parameter (Fig. 31b). We will
move to the implied constitutive model in two stages.

A link between peak frictional strength and state parameter implies that
for soils of a given density or specific volume the strength will increase as the
stress level falls and the state parameter becomes more negative (Fig. 29).
If we assume a form for the critical state line (for example, (45) (though
the principle of the argument is not dependent on the specific form of this
relationship), then a linear relationship between peak friction φ′

p and state
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Figure 32. Linear dependence of strength on state parameter (solid lines)
and Hvorslev strength relationship (dotted lines): (a) failure relationships
in p′ : q plane (each line or curve describes strengths of soils with the
same density or specific volume); (b) implied or assumed link between peak
strength and state parameter.

parameter ψ (Fig. 31, Fig. 32b: solid line) can be converted into a failure
relationship in the p′ : q effective stress plane (Fig. 32a: solid lines). If
interpreted without thought about its origin—particularly if the data do
not cover a sufficiently wide range to reveal significant curvature—we might
be tempted to assume that the soil is telling us that it possesses some
cohesion.

We distinguish between the ultimate strength that is mobilised at large
deformation and any temporary peak that may be seen on the way be-
cause the density is temporarily higher than it will be eventually. At large
deformation the strength, expressed as the ratio of shear stress to normal
stress R = τ/σ′

z , has the value Rc. If the density of the soil is presently
different from the density appropriate to ultimate failure with the present
normal stress, the available strength of the soil Rp is different from Rc. If
the current specific volume is different from vf , the current strength is Rp

(Fig. 29b):

Rp = Rc + ζR(vf − v) (47)

where v − vf is the state parameter ψ. Thus, dense soils, with vf > v,
have current strength greater than the large deformation strength. Loose
soils, with vf < v, have current strength lower than the large deformation
strength.
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9 Elastic-Hardening Plastic Models

Perfect plasticity is rather limited in its capability for matching certain as-
pects of observed mechanical response of soils. Hardening plasticity opens
up further modelling possibilities. Perfect plasticity enables us to reproduce
the inelasticity of soil behaviour—the accumulation of irrecoverable strains.
Hardening plasticity enables us in addition to describe prefailure nonlinear-
ity. The additional feature required is that the yield function is no longer
merely a function of the stresses but also introduces a hardening parameter
which characterises the current size of the yield surface. An extra hardening
equation is then required to define the way in which this hardening parame-
ter changes as plastic strains occur—or in other words to define the penalty
in permanent deformation of the material which is necessary in order to
increase the size of the elastic region and harden the material.

There are four ingredients of the hardening plastic models—three of
these are common to the perfectly plastic models.

1. Elastic properties : Whenever the stresses change elastic strains will
occur. We may assume isotropic elastic behaviour for convenience but
this is not essential.

δσ = Dδεe (48)

2. Yield criterion: We need to define the current boundary in stress
space to the region of elastic behaviour (Fig. 33). Within this region
all stress changes can be applied without incurring irrecoverable de-
formations. The definition of the yield function allows us to answer
the question: are yield and plastic deformation occurring? For a hard-
ening model the boundary is not fixed but will depend on the history
of loading of the soil.

The yield criterion is a function of a hardening parameter χ:

f(σ, χ) = 0 (49)

The current stress state cannot lie outside the current yield surface
but the yield surface is able to expand in order to accommodate the
imposed stress changes. The consistency condition (23), which states
that the stress state must remain on the yield surface when plastic
strains are being generated, now becomes:

f(σ, χ) = 0; δf =
∂f

∂σ

T

δσ +
∂f

∂χ
δχ = 0 (50)
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stress

hardening yield surface f(σ, χ) = 0 

plastic potential g(σ) = 0

δεp

δσ

elastic

Figure 33. Elastic-hardening plastic model: yield surface separating elastic
from plastic regions of stress space, and plastic potential for definition of
plastic strain increments.

3. Flow rule: We require some way of describing the mechanism of plastic
deformation. We can conveniently do this in just the same way as for
the perfectly plastic model using a plastic potential g(σ) to indicate
the ratio of the several strain components (Fig. 33) and to show that
the plastic strains are controlled by the current stresses at yield and
not by the stress increment which brought the soil to yield:

δεp = Λ̇
∂g

∂σ
(51)

where Λ̇ is again a scalar multiplier which we have to find. It may
sometimes be convenient to assume that the functions f and g are the
same: the material then obeys the hypothesis of associated flow (the
flow is associated with the yield criterion) or normality (the strain
increment vectors are normal to the yield surface at the current stress
state) but this is certainly not a necessary assumption and certainly
not an assumption of which soils are aware.

4. Hardening rule: The hardening rule links the change in size of the yield
surface with the magnitude of the plastic strain and hence provides a
link between χ and Λ̇.

For our general hardening plasticity model we must suppose that the
hardening parameter is some general function χ(εp) of the plastic strains.
The combination of the consistency condition (50) and the flow rule (51)
then gives:

∂f

∂σ

T

δσ + Λ̇
∂f

∂χ

∂χ

∂εp

T ∂g

∂σ
= 0 (52)



www.manaraa.com

172 D. Muir Wood

and if we write

H = −∂f

∂χ

∂χ

∂εp

T ∂g

∂σ
(53)

a procedure exactly similar to that used for the perfectly plastic model can
be used to generate the stiffness relationship between stress increments and
total strain increments:

δσ =

[
D − D

∂g
∂σ

∂f
∂σ

T
D

∂f
∂σ

T
D

∂g
∂σ +H

]
δε = D

epδε (54)

9.1 Extended Mohr-Coulomb Model

A hardening version of the Mohr-Coulomb model in which the size of
the yield surface varies in some nonlinear way with the development of
plastic strain is a natural extension. The hardening will be linked only
with distortional strain: such a distortional hardening model is found to
be quite useful for the modelling of sands where it is rearrangement of the
rather hard particles that dominates the response at typical engineering
stress levels and irrecoverable volumetric changes are essentially linked with
this rearrangement.

1. Elastic properties : The elastic properties are assumed to be described
by a linear isotropic elastic model which requires two stiffness properties
such as shear modulus G and bulk modulus K

D =

(
K 0
0 3G

)
(55)

In fact for many granular materials it might be reasonable to assume that
the shear stiffness is not in fact constant but varies in some way with stress
level—for example:

G ∝ p′
1

2 (56)

However, cavalier introduction of nonlinear elasticity risks thermodynamic
unacceptability and that if we want the shear stiffness to vary with stress
level then we should really invoke an elastic strain energy function to achieve
this.

2. Yield criterion: The yield criterion is a generalisation of the yield
criterion assumed for the perfectly plastic model

f(σ, χ) = f(p′, q, ηy) = q − ηyp
′ (57)

where ηy is a hardening parameter which indicates the current size of the
yield locus (Fig. 34a). The yield locus is allowed progressively to expand
until it reaches some limiting failure size.
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Figure 34. Elastic-hardening plastic Mohr-Coulomb model: (a) yield locus
and failure locus separating elastic, plastic and inaccessible regions of stress
plane; (b) plastic potential curves (solid lines) and yield loci (dashed lines).

3. Flow rule: It is not satisfactory to assume normality of plastic strain
increment vectors to the current yield locus. Normality would imply

δεpp
δεpq

= −ηy (58)

and that volumetric expansion accompanies shearing at all non-zero stress
ratios and that the rate of volumetric expansion—possibly characterised by
an angle of dilation—increases steadily as the yield stress ratio increases.
A more suitable description of the plastic volume changes can be developed
from the interpretation of the results of conventional direct shear tests on
sand (Fig. 17).

A stress-dilatancy equation (43) was deduced from the proposal of Taylor
(1948) of a link between dilatancy and mobilised friction in a shear box test.
We will now interpret this as a flow rule which controls the ratio of plastic
strain increments:

δεpp
δεpq

= M − q

p′
= M − ηy (59)

where M is the critical state stress ratio at which constant volume shearing
can occur. Evidently this flow rule is only invoked when the soil is yielding
so that the stress ratio q/p′ is then of necessity equal to ηy.

It can be deduced that the flow rule (59) corresponds to the plastic
potential function

g(σ) = q −Mp′ ln
p′r
p′

= 0 (60)

where p′r is an arbitrary variable introduced in order to allow us to create a
member of this general class of plastic potential curves passing through the
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current stress state. Then

(
δεpp
δεpq

)
= Λ̇

(
∂g
∂p′

∂g
∂q

)
= Λ̇

(
M − η

1

)
(61)

which is consistent with (59).
These plastic potential curves are plotted in Fig. 34b together with a

set of yield loci. The directions of the plastic strain increment vectors are
also shown: the difference from the directions implied from normality is
dramatic. Yielding at low stress ratio implies volumetric compression but
the rate of volumetric compression steadily decreases as the stress ratio
increases. For stress ratio q/p′ = M plastic deformation occurs at constant
volume; for stress ratio q/p′ > M plastic deformation is accompanied by
volumetric expansion.

4. Hardening rule: We will assume that the soil is a distortional hard-
ening material so that the current size of the yield locus ηy depends only
on the plastic distortional strain εpq . We are trying to describe using our
model a mechanical behaviour in which the stiffness falls steadily as the
soil is sheared towards failure. One of the simplest ways in which such
a stiffness degradation can be described is using a hyperbolic relationship
between stress ratio and distortional strain

ηy
ηp

=
εpq

ζS + εpq
(62)

or incrementally

δηy =
(ηp − ηy)

2

ζSηp
δεpq (63)

or (
∂ηy/∂ε

p
p

∂ηy/∂ε
p
q

)
=

(
0

(ηp − ηy)
2 /ζSηp

)
(64)

where ηp is a limiting value of stress ratio and ζS is a soil constant—which
essentially just scales the plastic strain since (62) and (63) are actually
functions of εpq/ζS .

We now have all the information that we need to produce the complete
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elastic-plastic stiffness relationship (54):(
δp′

δq

)
=⎡⎢⎢⎣( K 0

0 3G

)
−

( −K2ηy(M − ηy) 3GK (M − ηy)
−3GKηy 9G2

)
3G−Kηy (M − ηy) + p′ (ηp − ηy)

2
/ (ζSηp)

⎤⎥⎥⎦( δεp
δεq

)
(65)

The stiffness relation divides the stiffness into an elastic part and a plastic
part. In application of the model, the elastic stiffness can be used to predict
the stress change resulting from a given strain change. If this computed
stress change lies outwith the current yield surface then the plastic stiffness
can be applied as a corrector to bring the calculated stress state back onto
the (possibly hardened) yield surface.

When the yield stress ratio reaches the asymptotic value ηy = ηp, this
stiffness relationship becomes identical with that generated for the perfectly
plastic Mohr-Coulomb model (37) if we write ηy = ηp = M and (M − ηy) =
(M − ηp) = −M∗. As then, the stiffness matrix is not symmetric because
we have assumed a nonassociated flow rule: the plastic potential function
(60) is quite different from the yield function (57).

The information about yielding and hardening for this model can also
be used to generate the plastic compliance relationship linking plastic strain
increments with stress increments.(

δεpp
δεpq

)
=

ζSηp

p′ (ηp − ηy)
2

( − (M − ηy) ηy (M − ηy)
−ηy 1

)(
δp′

δq

)
(66)

However, this relationship is not always useful because, as the stress state
nears the asymptotic stress ratio q/p′ = ηp, there is a region of the (p′, q)
effective stress plane into which it is impossible for the stress increments
to stray. However, as expected, we can see that as the yielding stress ratio
tends to ηp so the plastic stiffness tends to zero and the compliance tends
to infinity.

The volumetric response depends on the relative values of ηp and M .
If ηp > M then the model predicts compression followed by expansion
(Fig. 35b). If ηp = M then the model predicts compression reducing un-
til a critical state of constant volume shearing is reached (Fig. 35b). (If
ηp < M the model predicts continuing volumetric compression as failure is
approached: Fig. 35b.) In this simple form we cannot describe strain soften-
ing with this model. In practice, pre-peak response may be adequate since
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Figure 35. Elastic-hardening plastic Mohr-Coulomb model: triaxial com-
pression tests with constant mean effective stress: (a) stress:strain response
and (b) volumetric response for different values ofM and ηp (K = 5000 kPa,
ν = 0.25, ζS = 0.005, p′ = 100 kPa).

working loads are not intended to produce significant amounts of failure
and we are interested in pre-failure response of our geotechnical structures.
If much of the soil around a structure has been brought to failure then the
overall deformations of the structure are likely to be unacceptably large.

The elastic-plastic stiffness relationship (65) can be used to generate the
envelope of stress responses to a rosette of applied total strain increments.
These are shown in Fig. 36 for two different values of stress ratio. As the
stress state approaches the peak stress ratio so the stress response envelope
(which is composed of two separate elliptical sections for the elastic and
elastic-plastic strain increments) becomes more and more distorted. It is
evident that the stress response envelope for the elastic-perfectly plastic
model (Figs. 14, 15) is a degenerate version of the response envelope for the
hardening model: the elastic-plastic ellipse has collapsed to a line segment.

An example of the application of this extended Mohr-Coulomb model is
provided by the calculation of the effective stress path that will be followed
in an undrained test. An undrained test provides a direct deformation
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Figure 36. Elastic-hardening plastic Mohr-Coulombmodel: stress response
envelopes for (a) ηy = η = 0.8 and (b) ηy = η = 1.3 (K = 1500 kPa, ν = 0.3,
ζS = 0.01, M = 1.2, ηp = 1.5, p′i = 100 kPa).

constraint:

δεp = δεep + δεpp = 0 (67)

The sum of the elastic and plastic volumetric strain increments is zero: any
tendency of the particle structure to undergo permanent rearrangement
and change in volume—for example, collapse—has to be countered by a
change in mean effective stress which leads to a balancing elastic volumetric
expansion. (A tendency of the volume to undergo irrecoverable expansion
will correspondingly be accompanied by an elastic compression.) The shape
of the effective stress path can be most easily found by requiring the elastic
and plastic volumetric strain increments to be equal and opposite at all
stages which from (55) and (66) implies

δp′

K
+

ζSηp

p′ (ηp − η)
2 [− (M − η) ηδp′ + (M − η) δq] = 0 (68)

(writing η for ηy since we are assuming that the soil is yielding throughout).
Noting that from the definition of stress ratio η

δq = p′δη + ηδp′ (69)
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equation (68) can be rewritten

δp′

K
+

ζSηp (M − η) p′δη

p′ (ηp − η)
2 = 0 (70)

and integrated to give

p′i − p′

K
= ζSηp

[
(M − ηp) (η − ηi)

(ηp − η) (ηp − ηi)
− ln

(
ηp − η

ηp − ηi

)]
(71)

where p′i and ηi are the initial values of mean effective stress and stress
ratio. For a soil which is initially isotropically compressed with ηi = 0 this
can be written

p′ − p′i
ζSKηp

= − (M/ηp)− 1

(ηp/η)− 1
+ ln

(
1− η

ηp

)
(72)

and this is plotted in Fig. 37 for different values of M and ηp. As η → ηp
the change in mean effective stress tends to infinity but the sign of the
change in mean effective stress (and hence broadly the sign of the pore
pressure that develops) depends on the sign of the difference between M
and ηp. If M ≥ ηp then the mean stress falls steadily (and pore pressure is
expected to build up). If M < ηp then the mean stress first decreases (pore
pressure build up) and then increases (pore pressure decrease). The model
suggests that this increase in mean stress continues indefinitely but on the
one hand the model is defective in suggesting that shearing accompanied by
dilation can continue to large strains and on the other hand an undrained
test would reach a physical conclusion when the pore pressure reaches a
negative value of about -100 kPa and cavitation of the pore water occurs.
(There is similarly a physical limit for low values of ηp in that an effective
stress of zero is reached as the pore pressure continues to increase.) These
limitations simply indicate some of the deficiencies of this simple model
which would need to be rectified if it were to be used for analyses in which
accurate representation of such response were reckoned to be essential.

9.2 Mohr Coulomb Model With Strength Dependent on State
Parameter

A way in which both hardening and softening can be rather simply—and
elegantly—combined in a single model, which is again clearly a development
from the Mohr-Coulomb family, has been described by Muir Wood et al.
(1994) and by Gajo and Muir Wood (1999). This is here developed for the
simple shear element of Fig 1.
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Figure 37. Elastic-hardening plastic Mohr-Coulomb model: undrained ef-
fective stress paths (K = 2000 kPa, a = 0.02, p′i = 200 kPa).
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Figure 38. Hyperbolic mobilisation of strength.

The ratio of shear stress to vertical effective stress, R = τ/σ′

z , is a
measure of the currently mobilised friction in our soil element: it is directly
equivalent to the ratio Q/P for the shear box. The way in which strength
is gradually mobilised as shear deformation increases is nonlinear (Fig. 17).
Let us assume a simple hyperbolic relationship between mobilised friction R
and shear strain εs which heads asymptotically towards the failure condition
at large strains (Fig. 38):

R

Rp
=

εs
ζS + εs

(73)

where ζS is a soil parameter which controls the initial shear stiffness of the
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element. Incrementally, this can be written:

δR =
1

Rp

[
(Rp −R)2

δεs
ζS

+RδRp

]
(74)

to remind us that the current strength Rp is not constant but depends on
current density from (47).

With a little manipulation, the various relationships can be written in
incremental form and combined to deduce the stress increments (δσ′

z , δτ)
that result from the application of any strain increments (δεz , δεs):

δσ′

z = Eo[δεz −Ψ3δεs]

δτ = Eo[−Ψ1δεz + (Ψ2 +Ψ1Ψ3)δεs]
(75)

where:

Ψ1 =
ζRR

Rp

[
β(vf − v̆)

(
σ′

z

σref

)β

− vσ′

z

Eo

]
−R

Ψ2 =

[
(Rp −R)2

ζSRp
+

ζRvRΨ3

Rp

]
σ′

z

Eo

Ψ3 = ζD(Rc −R)

(76)

The governing incremental equations (75) can be integrated numerically
to generate the response to any particular loading or deformation history.
Two obvious extremes to explore are the behaviour at constant vertical
stress—the drained response, δσ′

z = 0—and the behaviour when vertical
deformation is prevented—the undrained response, δεz = 0.

With constant vertical stress, δεz = Ψ3δεs, and the vertical, volumetric
strain is solely the result of dilatancy. The soil contracts if it is initially
looser than the failure line v > vf or dilates if it is initially denser than the
failure line v < vf (Fig. 30a). The shear stress:strain response is given by
(Fig. 39):

δτ = Ψ2Eoδεs (77)

Since this will in general imply volume change, we can think of this as a
drained response of the soil. We observe that, no matter what the initial
density or specific volume, the stress:strain response seeks out the large
deformation strength Rc, and the density changes, up or down, as required
in order that the ultimate state of the soil should lie on the line of ultimate
failure states (45).

Shearing at constant height, on the other hand, imposes a sort of con-
jugate mode of deformation on the soil. Whereas with constant vertical ef-
fective stress the height of the soil element will in general change (Fig. 39),
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Figure 39. Drained shearing with different initial densities: (a) stress:strain
response; (b) vertical strain.

with constant height the vertical effective stress will in general change. We
can understand this by studying the component parts of (44). Our imposed
constraint controls the sum of the two components not the individual com-
ponents of vertical strain. The shearing produces dilatant vertical strains
δετz and the vertical effective stress has to change to provide vertical strains
δεσz = δσ′

z/Eo = −δετz to balance these, which would otherwise cause a
change in height (volume) of the soil. Thus, if the soil is initially dense
and is trying to expand, δετz < 0, the vertical effective stress has to in-
crease to provide compensating compression, δεσz > 0 (Fig. 30b). Similarly,
if the soil is initially loose and is trying to contract, δετz > 0, the vertical
effective stress has to decrease to provide compensating expansion, δεσz < 0
(Fig. 30b). In either case, the total vertical strain increment is zero. The
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Figure 40. Undrained shearing with different initial densities: (a)
stress:strain response; (b) effective stress path; (c) change in vertical ef-
fective stress.
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shear stress:strain response is given by (Fig. 40a):

δτ = (Ψ2 +Ψ1Ψ3)Eoδεs (78)

and the effective stress path is given by (Fig. 40b):

δσ′

z

δτ
= − Ψ3

Ψ2 +Ψ1Ψ3
(79)

This constant volume shearing is equivalent to the undrained response of
the soil. The change in vertical effective stress could occur by applying a
constant external vertical total stress δσz = 0, and then preventing any
water from escaping from the saturated soil sample and allowing pore pres-
sures to develop to produce the required changes in vertical effective stress:
δσ′

z = δσz − δu = −δu. Alternatively, we could permit full drainage from
the soil so that no pore pressures could develop, and then change the applied
vertical stress to maintain the height of the sample constant. The changes
in pore pressure that we discover with the first technique will exactly mirror
the changes in external vertical stress that we see with the second (Fig. 40c).
We can observe again that, no matter what the initial density or specific
volume, the stress:strain response seeks out the large deformation strength
Rc, and the vertical effective stress changes, up or down as required, to force
the ultimate state of the soil to lie on the line of ultimate failure states (45).

This model now homes in on a critical state condition, heading always
towards the current peak strength following the hyperbolic hardening law
but this peak strength is itself changing as the soil compresses or dilates
with shearing. Thus, even though the hardening law appears to be a sim-
ple hyperbolic monotonically increasing function of strain, nevertheless the
stress:strain response is able to introduce strain softening and the accom-
panying smooth transition between compression and dilation. The peak
strength is thus a moving target which can only be attained at infinite dis-
tortional strain (it remains the asymptote of the hardening law) by which
time it is identical with the critical state strength.

The behaviour depends strongly on the initial value of state parameter:
a positive initial state parameter indicates an initially loose material which
tends to compress as it is sheared and shows little in the way of a peak
strength; a negative initial state parameter indicates an initially dense ma-
terial which dilates as soon as the critical state stress ratio is exceeded on
the initial loading and then shows a peak with subsequent strain softening.

However, the model is rather powerful. It shows how the shearing re-
sponse depends on the initial density of the soil. It shows how the volume
changes accompanying shearing inexorably move the soil from its initial
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Figure 41. (a) Large irrecoverable volume changes in oedometer test on
clay subjected to (b) typical compression stress path giving rise to (c) elastic
volume changes in Mohr-Coulomb model.

condition to the failure line in drained tests, and the vertical effective stress
has to change to allow the soil to move to the failure line in undrained tests.

For any complex model, there is a simpler model lurking inside which we
can find by eliminating some of the special effects. Thus, we could eliminate
the nonlinearity of normal stiffness by setting ζS = 0; we could eliminate
the dilatancy (the change in volume induced by shearing) by setting ζD = 0;
we could eliminate the variation of strength with density by setting ζR = 0.

10 Cam Clay

Cam clay was the first hardening plastic model to have become generally
adopted for soils. It has formed a basis for much subsequent development
of soil models. Originally developed in the early 1960s, models of the Cam
clay form have been widely and successfully used for analysis of problems
involving the loading of soft clays. It has been less successful in describing
the behaviour of sands for which models which make use of distortional
hardening and nonassociated flow (§9.1) have generally been reckoned to be
more satisfactory. A detailed description of the Cam clay model and of the
behaviour of soils—especially clays—seen against the patterns of behaviour
that the Cam clay model reveals is given by Muir Wood (1990); here we will
present the model within the general framework of elastic-hardening plastic
models that has been developed in section §9.

For clays, an important aspect of the observed mechanical behaviour
is the large change in volume that occurs during compression (Fig. 41)
when the stresses acting on a sample of soil are all increased in propor-
tion—isotropic compression and one-dimensional compression are obvious
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Figure 42. Cam clay: linear normal compression and unloading-reloading
lines in semilogarithmic compression plane.

examples. Clearly if the model is to be used to reproduce the loading of
soft clays then this volumetric response must be included. However, apply-
ing such proportional stress paths to any of the Mohr-Coulomb models, as
presently described, will produce solely elastic response as shown in Fig. 41c
(except insofar as the vertical stiffness produces vertical strains δεσz whose
magnitude is influenced by the overconsolidation ratio of the soil (§2)). The
irrecoverability of the volumetric response suggests that a different mech-
anism of plastic deformation will be required. This could be achieved by
adding extra yield mechanisms to the Mohr-Coulomb models; the Cam clay
model that will be described here provides an elegant alternative route using
a single yield surface.

As before, for simplicity we will develop the model in terms of the tri-
axial strain increment and stress variables and work through the several
ingredients of the model in turn.

1. Elastic properties : We will assume that the elastic behaviour of the
soil is isotropic and defined by two elastic parameters, bulk modulus
K and shear modulus G.

Results of oedometer tests are typically presented in semilogarith-
mic plots because it is found that the relationships between stress
and volume change then become somewhat more linear—both during
loading and during unloading. Looking at the typical loading and
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unloading response in an oedometer (Fig. 41a) we can easily see the
division of the volume changes into elastic and plastic parts. It is
logical then to use the average slope κ of an unload-reload line to
characterise the elastic volumetric response (Fig. 42) and to assume
that κ is a soil constant:

v = vκ − κ ln p′ (80)

where vκ is a reference value of specific volume on a particular unloading-
reloading relationship. We can convert this to an incremental relation-
ship

δεep = −δv

v
=

κ

v

δp′

p′
(81)

which implies that the bulk modulus K is not constant but is depen-
dent on stress level (and on current packing)

K =
δp′

δεep
=

vp′

κ
(82)

Having chosen one elastic property we require one more (the elastic
properties of our material may be nonlinear but the material is still
assumed to be isotropic). We may often find it convenient to choose
a constant shear modulus G because we will see this directly from the
initial behaviour in any compression test.

δεeq =
δq

3G
(83)

An alternative will be to choose a constant value of Poisson’s ratio ν,
thus forcing a constant ratio of shear modulus and bulk modulus.

G = K
3(1− 2ν)

2(1 + ν)
(84)

Clearly if G is constant then the variation of bulk modulus K with
stress will lead to a varying ν (and as the effective mean stress and
hence the bulk modulus fall towards zero the value of Poisson’s ratio
will tend towards −1). However, if Poisson’s ratio ν is assumed to
be constant then G changes together with bulk modulus and there
are thermodynamic problems if we make both G and K functions of
p′—it becomes possible to generate or dissipate energy on supposedly
elastic cycles of stress change (Zytynski et al., 1978). (Zytynski et al.,
1978). It is not possible to define an elastic potential which implies
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Figure 43. Elliptical yield locus for Cam clay model.

a constant Poisson’s ratio if the bulk modulus is a function of mean
stress alone.

With certain reservations then, we have the elastic stiffness and
compliance relationships:(

δp′

δq

)
=

(
vp′/κ 0
0 3G

)(
δεep
δεeq

)
(85)(

δεep
δεeq

)
=

(
κ/vp′ 0
0 1/3G

)(
δp′

δq

)
(86)

2. Yield criterion: In the triaxial stress plane (p′, q) it is assumed that
the yield locus has an elliptical shape passing through the origin of
the stress plane (Fig. 43). This introduces two variables: the aspect
ratio of the ellipse M which controls the shape of the ellipse, the ratio
of the vertical (q) axis to the horizontal (p′) axis; and the size of the
ellipse p′o which is the hardening parameter χ for the Cam clay model.
The equation of the ellipse can be presented in various different ways.
To fit in with the general presentation of hardening plastic models we
can write:

f (σ, p′o) =
q2

M2
− p′ (p′o − p′) (87)

so that, as usual, f < 0 indicates elastic behaviour, f = 0 indicates
that yielding is occurring and f > 0 is not permitted.

It is often convenient to work in terms of mean stress p′ and stress
ratio η. As the size of the yield locus changes the shape remains the
same and the locus grows from the origin. Along any line at constant
stress ratio η = q/p′ the angle of intersection with any yield locus is
always the same.

51
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3. Flow rule: It is assumed that Cam clay obeys the hypothesis of asso-
ciated flow (normality) so that the plastic strain increment vector is
assumed to be normal to the yield surface at the current stress state
(Fig. 43). The plastic potential function then has the same form as
the yield criterion:

g (σ) = f (σ, p′o) =
q2

M2
− p′ (p′o − p′) = 0 (88)

The plastic strain increments are given by(
δεpp
δεpq

)
= Λ̇

(
∂g
∂p′

∂g
∂q

)
= Λ̇

(
2p′ − p′o

2q
M2

)
(89)

The plastic deformation mechanism can also be written:

δεpp
δεpq

=
M2 − η2

2η
(90)

showing that the mechanism of plastic deformation depends only on
the stress ratio at which yielding is occurring and changes continuously
as the stress ratio changes.

Several particular cases are of interest:

– for η = 0, δεpp/δε
p
q = ∞ which implies compression without dis-

tortion and this is appropriate for isotropic consolidation without
application of distortional stresses;

– for η = M , δεpp/δε
p
q = 0 which implies distortion without compression—

this is the critical state condition;

– yielding with low values of stress ratio η < M gives δεpp/δε
p
q > 0

which implies compression plus distortion; and

– yielding with high values of stress ratio η > M gives δεpp/δε
p
q < 0

which implies expansion plus distortion.

4. Hardening rule: The hardening rule describes the dependence of the
size of the yield locus p′o on the plastic strain. Cam clay is a volumetric
hardening model in which it is assumed that the size of the yield locus
depends only on the plastic volumetric strain through an expression(

∂p′o/∂ε
p
p

∂p′o/∂ε
p
q

)
=

(
vp′o/(λ− κ)

0

)
(91)

This hardening rule introduces one additional soil parameter λ.
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Now that all the ingredients of the model are in place the overall plastic
compliance relationship can be deduced:(

δεpp
δεpq

)
=

λ− κ

vp′ (M2 + η2)

(
M2 − η2 2η

2η 4η
M2−η2

)(
δp′

δq

)
(92)

and the full stiffness matrix linking the stress increments with the total
strain increments can be obtained by substitution in (53) and (54). The
hardening quantity H is given by

H = − ∂f

∂p′o

∂p′o
∂εpp

∂g

∂p′
= − (−p′)

(
vp′o
λ− κ

)
(2p′ − p′o) (93)

and the full elastic-plastic stiffness relationship is given by(
δp′

δq

)
=⎡⎢⎢⎢⎢⎢⎢⎣

(
K 0
0 3G

)
−

⎛⎝ K2 (2p′ − p′o)
2 6GKq(2p′

−p′

o)
M2

6GKq(2p′
−p′

o)
M2

36G2q2

M4

⎞⎠
[
K (2p′ − p′o)

2
+ 12Gq2

M4 +
vp′p′

o
(2p′

−p′

o
)

λ−κ

]
⎤⎥⎥⎥⎥⎥⎥⎦
(

δεp
δεq

)
(94)

where K = vp′/κ.
Whether the compliance form (92) or the stiffness form (94) is used it

is evident that the controlling matrix is symmetric: this results from the
assumption of associated flow in which the vectors of plastic strain increment
are assumed to be normal to the yield locus at the current effective stress
causing yield.

Study of (92) shows that the magnitude of the plastic strains is controlled
largely by λ−κ. It will be the difference between these two soil parameters
(rather than the absolute value of either of them) that will have to be varied
in order to match available experimental data. Some qualitative statements
about the nature of the stress:strain response can be made.

What happens as η → M? The top line of the compliance matrix (92)
shows that as the stress ratio approaches the valueM so the plastic volumet-
ric strains become smaller and smaller. Since the plastic hardening depends
only on the plastic volumetric strain it can be deduced correspondingly that
the change in p′o in any stress increment has to tend to zero as the stress
ratio approaches M . The bottom line of the compliance matrix shows that
the shear compliance tends to infinity, or in other words the shear stiffness
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tends to zero. In fact, an asymptotic perfectly plastic condition is predicted
in which distortional strains continue but with no further changes in size of
yield locus, stresses or volumetric strains: a critical state.

η → M : δεpp → 0; δp′o → 0;
δεpq
δq

→ ∞ (95)

The value of the soil parameter M can therefore be related to the ul-
timate value of the angle of shearing resistance for the soil φc in triaxial
compression:

M =
6 sinφc

3− sinφc
(96)

The Cam clay model responds stably to yielding with stress ratio η < M
and under such conditions it does not matter whether the problem is driven
by stress changes or by strain changes: it is often conceptually easier to
think of the response to stress changes because the model has been de-
scribed in terms of a yield locus in a stress plane. In a typical compression
test the deviator stress rises steadily towards the ultimate value (low over-
consolidation ratio in Fig. 44). A typical stress response envelope for this
regime is shown in Fig. 45a. The two elliptical segments are now tangential
to each other for stress increments which imply neutral loading with the
stress increment tangential to the yield locus. This is a consequence of the
assumption of associated flow.

However, if the soil is yielding with stress ratio η > M then study of (92)
shows that the distortional compliance is negative and continuing shearing
with δεpq > 0 implies δεpp < 0, δp′o < 0 and δq < 0 which implies strain
softening (high overconsolidation ratio in Fig. 44). The stress ratio η = M
is still an ultimate asymptote but the soil now approaches this stress ratio
from above rather than from below. Consideration of the equation for the
yield locus (87) shows that yielding with stress ratios greater than M is only
possible for values of p′/p′o less than 1/2—overconsolidation ratios greater
than 2. Such behaviour is characteristic of dense or heavily preloaded ma-
terials which are so tightly packed that they have to expand in order that
the particles should be able to move relative to each other and allow the
material to distort.

This is a real phenomenon, but as noted in §9.1, it can lead to numerical
problems because of the uncertainty: does a reduction in shear stress imply
an elastic unloading or a continuing plastic strain softening? The stress
response envelope (Fig. 45b) illustrates this ambiguity: it is folded over on
itself. All strain increments are possible and each strain increment implies
an unambiguous stress increment. However, certain stress increments—
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Figure 44. Cam clay: (a) stress:strain and (b) volumetric strain response
in drained triaxial compression tests with constant mean stress (δp′ = 0)
(κ = 0.05, G = 1500 kPa, λ = 0.25, M = 1.2) (overconsolidation ratios
p′o/p

′

i in range 1-5, p′o = 100 kPa).
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Figure 45. Cam clay: stress response envelopes (a) η < M , p′i/p
′

o = 0.75;
(b) η > M , p′i/p

′

o = 0.25 (κ = 0.1, ν = 0.3, λ = 0.25, M = 1.2) (vi = 2.5,
p′o = 200 kPa).

those which attempt to escape from the current yield locus—are not pos-
sible and the section of the stress plane lying outside the yield locus in the
region for which η > M is inaccessible (Fig. 46). Stress changes which
move inside the current yield locus can be associated with either purely
elastic or with elastic plus plastic strains. In analysis of such situations
the soil response has to be driven by strain increments—which will make it
quite clear whether unloading or plastic softening is implied—rather than
stress increments precisely because many stress increments will in fact be
physically either impossible or ambiguous. Numerically and physically such
behaviour leads to the occurrence of localisation: as the material softens it
becomes weaker and natural inhomogeneities lead to strain concentrations
and formation of ruptures or shear bands through the material.

The Cam clay model has five material properties. There are two elastic
properties κ (linked with swelling index Cs) and G or ν. There are two
plastic properties M and λ which can be linked with angle of shearing
resistance in triaxial compression φc (96) and compression index Cc.

The final soil parameter is a reference for volume in order that volumet-
ric strains can be calculated. We have defined the equation of the isotropic
normal compression line using a reference parameter N to indicate the spe-
cific volume for unit mean stress (Fig. 42). However, results of predictions
made using Cam clay are not usually very sensitive to plausible variations of
N—so the reference volume can just as well be taken from one-dimensional
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Figure 46. Cam clay: hardening of yield locus with η < M , softening of
yield locus with η > M .

compression data.
The isotropic normal compression line defines the values of specific vol-

ume when the stress state is always at the tip of the yield locus, p′ = p′o and
the soil is always yielding. More generally, for stress states inside the yield
locus there is some implied elastic expansion from the normal compression
line (Fig. 42) and the specific volume is given by

v = N − λ ln p′o + κ ln

(
p′o
p′

)
(97)

or, if the soil is yielding with stress ratio η

v = N − λ ln p′o + κ ln

(
M2 + η2

M2

)
(98)

and for isotropic compression η = 0, p′ = p′o and v = N − λ ln p′. The
value of N depends on the units used for measurement of stress. Users of
Cam clay need to be vigilant. Here we will always take the value of N to
correspond to a mean stress p′ = 1 kPa.

The effective stress path followed in an undrained test can be calculated
in exactly the same way as for the Mohr-Coulomb models by requiring
the elastic and plastic volumetric strain increments to be always equal and
opposite. From the expressions for elastic and plastic volumetric strain
increments and the definitions of p′o ((87)) and of stress ratio η = q/p′:

κδp′ +
λ− κ

M2 + η2
[(
M2 + η2

)
δp′ + 2ηp′δη

]
= 0 (99)

Integrating this expression, from an initial yielding stress state p′i and ηi,
and substituting

Λ =
λ− κ

λ
(100)
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Figure 47. Cam clay: undrained triaxial compression tests conducted
with constant total mean stress (δp = 0): (a) effective stress paths;
(b) stress:strain response; (c) development of pore pressure (κ = 0.05,
G = 1500 kPa, λ = 0.25, M = 1.2) (overconsolidation ratios p′o/p

′

i in range
1-5, p′o = 100 kPa).

the effective stress path is found to be

p′i
p′

=

(
M2 + η2

M2 + η2i

)Λ

(101)

ending at a failure state with mean effective stress p′f and stress ratio equal
to M :

p′i
p′f

=

(
2M2

M2 + η2i

)Λ

(102)

For elastic stress changes the constant volume condition requires, for an
isotropic elastic material, that there should be no change in mean effective
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stress. Effective stress paths for initially normally consolidated, lightly over-
consolidated and heavily overconsolidated Cam clay are shown in Fig. 47.
For the isotropically normally consolidated soil (ηi = 0) the ratio of mean
effective stresses at the start of the test (p′i) and at failure (p′f ) is 2

Λ. The
undrained strength of the soil cu is given by:

cu =
qf
2

= M
p′f
2

=
M

2

p′i
2Λ

(103)

For isotropically normally consolidated soil the ratio of undrained strength
to initial effective stress is a function only of soil constants M and Λ:

cu
p′i

=
M

21+Λ
(104)

11 Response of Models to Cyclic Loading

11.1 Elastic-Perfectly Plastic Model

The incremental stiffness is either zero or has the full elastic value. This
characteristic of the elastic-perfectly plastic model is slightly obscured when
soil behaviour is described in terms of secant stiffness. It is standard prac-
tice to show variation of shear stiffness with shear strain both for monotonic
testing (Fig. 48a)—where the stiffness falls as failure is approached—and
for cyclic, or more generally non-monotonic testing—where the average stiff-
ness in any cycle reflects the strain level at which the direction of loading
was reversed (Fig. 48a). Typical experimental data show a reduction in av-
erage cyclic (secant) stiffness with increasing strain amplitude. An elastic-
perfectly plastic model will also show a reduction in average secant stiffness
with increasing strain amplitude (Fig. 49) but when the response is consid-
ered in terms of tangent stiffness it is very clear that the secant response
is the combination of a constant prefailure stiffness with varying amounts
of strain imposed while the soil is at failure and hence has zero tangent
stiffness (Fig. 50).

If the shear strain to failure of an elastic-perfectly plastic soil with shear
modulus G is γf then at a strain of γm the shear stress is Gγf and the
secant stiffness Gs is

Gs = G
γf
γm

(105)

This is plotted in Fig. 49.
The damping ratio ξ can also be calculated. The energy dissipated in

each cycle is

W = 4Gγ2
f

(
γm
γf

− 1

)
(106)
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Figure 48. Range of (a) secant shear stiffness degradation data (normalised
with shear stiffness at very small strain) Gmax and (b) damping ratio for
Quiou sand from resonant column and torsional shear tests (after LoPresti
et al., 1997).
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Figure 49. Elastic-perfectly plastic Mohr-Coulomb model: stiffness and
damping variation with strain (yield strain =0.01).
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Figure 50. Variation of secant stiffness with strain amplitude for cycles of
loading of elastic-perfectly plastic material.
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Figure 51. Elastic-hardening plastic Mohr-Coulomb model: variation of
secant and tangent shear stiffness and damping ratio with strain.

and the maximum elastic energy stored in each cycle is

ΔW =
1

2
Gγ2

f

γm
γf

(107)

so that

ξ =
2

π

(
1− γf

γm

)
(108)

and this is also plotted in Fig. 49.

11.2 Elastic-Hardening Plastic Model

The variation of stiffness with strain in monotonic straining and the
variation of damping ratio in cyclic shearing are shown in Fig. 51. Obviously
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Figure 52. Cam clay: cyclic undrained triaxial compression tests conducted
with constant total mean stress (δp = 0) and constant shear strain ampli-
tude: (a) effective stress paths; (b) stress:strain response; (c) development
of pore pressure.

the tangent stiffness now falls more gradually than for the elastic-perfectly
plastic model (Fig. 49).

11.3 Cam Clay

From Fig. 47 we can readily deduce the response of Cam clay to cyclic
undrained loading. Under constant amplitude of deviator stress q the model
will predict yielding in the first loading but thereafter purely elastic re-
sponse. Under cycles of constant amplitude of distortional strain εq, yield-
ing occurs in each reversal path in order to generate sufficient plastic strain
(Fig. 52). The effective stress path moves progressively to lower mean ef-
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Figure 53. Comparison of typical capability of elastic-hardening plastic
model with actual soil behaviour (a) variation of tangent stiffness with
monotonic shearing; (b) unload-reload response.

fective stress and settles beneath the critical state point η = M : at this
mean effective stress the perfect plasticity of the critical state is able to
generate sufficient plastic distortional strain without any further change in
mean effective stress.

12 Kinematic Hardening Plasticity

In section §2 we described some of the kinematic aspects of stiffness of soils
and we showed a schematic variation of stiffness with non-monotonic loading
in Fig. 4. How far have we progressed towards being able to reproduce this
character of response?

Although our elastic-hardening plastic models are an evident improve-
ment on the elastic-perfectly plastic models in that they provide for a steady
decrease of tangent stiffness after yield occurs, rather than an immediate
drop to zero (Fig. 10), there is still the dramatic fall in stiffness as the stress
path crosses the yield surface (Fig. 53a) whereas real soils tend to show much
more gradual stiffness changes. There is also a significant difference on un-
loading (Fig. 53b). The elastic-plastic models described here predict that
the yield surface will expand as the stress state pushes it outwards—and
the more it expands the larger the elastic region that remains. In fact, our
kinematic observation suggests that, though the elastic region may indeed
change in size as the stresses push it around, it is the change in position
that is possibly more significant. Unloading paths develop plasticity in a
way that the Cam clay model cannot describe.

Such response can be described using a kinematic hardening extension of
the hardening plasticity models. Our models are so far essentially isotropic
hardening models: the Cam clay yield locus retains its shape and orien-
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Figure 54. Kinematic hardening Mohr-Coulomb model.

tation, and always passes through the origin of stress space whatever the
stress path that interacts with it; the yield locus of the Mohr-Coulomb
model becomes a progressively more open cone.

12.1 Kinematic Hardening Mohr-Coulomb Model

Although we are describing some of the nonlinearity of stiffness and
post-peak softening of sand we are not yet able to describe the nonlinearity
and reversed plasticity that is observed when the direction of loading is
reversed. Our models tell us that the behaviour will be purely elastic for
all stress ratios lower than the previous maximum stress ratio. A simple
way to overcome this shortcoming is to add kinematic hardening to the
model so that the elastic region of high stiffness is carried round with the
recent stress history (Fig. 54). The boundary of this elastic region is of
course the yield surface but in order to retain a hierarchical link with the
previous model we describe the previous yield surface (or, in this model, the
current strength surface) as a bounding surface and use the idea of bounding
surface plasticity (Dafalias and Popov, 1975) to permit the plastic hardening
stiffness to depend on the separation of the yield surface and bounding
surface. By careful choice of the stiffness interpolation function we can
make the stiffness vary continuously and smoothly from the elastic value to
the fully plastic value as the stress state moves from within the kinematic
yield surface towards the outer surface.

This model, named Severn-Trent sand in its complete form (Gajo and
Muir Wood, 1999), has been successfully calibrated against triaxial test data
for Hostun sand (Fig. 55). The effects of different initial density or stress
level are automatically described using a single set of soil parameters. We
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Figure 55. Comparison of simulation and experiment: effects of initial
density on triaxial undrained compression tests on Hostun sand with initial
mean effective stress p′i = 200 kPa (Gajo and Muir Wood, 1999).

ignore the practical problem of maintaining complete homogeneity within
a sand sample which is undergoing softening and merely propose that the
model is demonstrably able to describe the sort of softening that might
develop within a localised shear band. More detailed analysis of the effects
of localisation in sand samples is given by Gajo et al. (2004) again based on
a model equivalent to Severn-Trent sand.

The use of the model to simulate cyclic undrained loading leading to
eventual liquefaction is shown in Fig. 56. The model fails after 25 cycles;
the actual soil sample fails after 89 cycles. Number of cycles to liquefaction
is not a particularly reliable parameter to use for model calibration—though
there is an obvious significant difference between samples which liquefy in
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Figure 56. Comparison of simulation and experiment: undrained cyclic
loading of loose Hostun sand.

one or two cycles and those which, like the one shown in Fig. 56, survive
for many cycles. The important conclusion is that this model is able to
reproduce an important aspect of soil response which is linked to the volume
change characteristics of the soil.

12.2 Kinematic Hardening ‘Bubble’ Cam Clay Model

A kinematic hardening extension of a Cam clay-like model is illustrated
in Fig. 57b (Al-Tabbaa and Muir Wood, 1989). The elastic region is now
confined to an elastic ‘bubble’ which floats around in stress space with
the current stress state. Plastic strains occur whenever the ‘bubble’ moves
but the plastic stiffness is controlled by the separation, b, of the ‘bubble’
and some outer bounding surface and falls as the ‘bubble’ approaches this
bounding surface. A translation rule is introduced to describe the way in
which the ‘bubble’ decides how much to change in size and how much to
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Figure 57. (a) Cam clay; (b) kinematic hardening extension of Cam clay:
‘bubble’ bounds elastic region and moves with stress history.

change in position as the stress engages with it.
The ‘bubble’ has the same shape as the bounding surface and a size

which is a fixed proportion R of the size of the bounding surface. With ap-
propriate formulation this model can be made to behave identically to Cam
clay when the soil is being loaded with the ‘bubble’ in contact with the
bounding surface (which then looks rather like the Cam clay yield surface—
but is not actually a yield surface because it does not control the onset
of development of plastic strains) (Fig. 57a, b). There is thus a hierarchi-
cal development of the model, adding desirable features (smooth variation
of stiffness, plasticity on stress reversal) to an already somewhat familiar
model, Cam clay. (Setting the size ratio of the ‘bubble’ R = 1 the model is
identical to Cam clay.)

In conformity with Cam clay, an assumption of normality is made for
the definition of the plastic flow mechanism and plastic hardening is driven
by plastic volumetric strain only. Since the sizes of the ‘bubble’ and outer
surface are tied together in a constant ratio, plastic volumetric hardening
produces a change in size of both surfaces.

The concept of the model is shown graphically in Fig. 57b in a conven-
tional triaxial stress plane. The ‘bubble’ and the outer surface have the
same elliptical shape. The outer surface passes though the stress origin.
The ‘bubble’, which encloses the elastic domain moves around within the
outer surface following a kinematic hardening rule.

As in Cam-clay, the scalar hardening variable po, which controls isotropic
hardening, is dependent only on plastic volumetric strain increments.

Kinematic hardening is used to define the translation rule of the ‘bub-
ble’. For any stress point, σ, on the ‘bubble’ f=0 there is a conjugate point
σc on the outer surface F = 0 having the same direction of the outward
normal as shown in Fig. 57. The smooth transition between the ‘bubble’
and the outer surface requires the centre of the ‘bubble’ to translate relative
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to the centre of the outer surface in a direction parallel to the line joining
the current stress and the conjugate point. This geometric requirement
can be combined with the consistency condition on the ‘bubble’ (the stress
state must lie inside or on the ‘bubble’ at all times) to deduce the relative
amounts of hardening and translation required to accommodate the new
stress state. The starting point in describing a smooth variation of stiffness
as the ‘bubble’ approaches the outer surface is to define a normalised dis-
tance b between the current stress and the conjugate stress. This distance
vanishes when the two surfaces are in contact; it is normalised with its max-
imum value, obtained when the ‘bubble’ is touching the outer surface at a
point diametrically opposite the conjugate point σc (with the current stress
on the ‘bubble’ diametrically opposite this point of tangency). The harden-
ing modulus is made a function of this normalised separation of the surfaces
and allows a steady fall of stiffness with strain towards the Cam-clay value
as the ‘bubble’ approaches the outer surface.

Typical response of this ‘bubble’ model for a cyclic triaxial test is shown
in Fig. 58. There is a combination of hysteretic cyclic stress:strain response
together with development of permanent strains.

13 Viscoelastic Model

The models that we have described are rate-independent. The dominant
rate effects seen in most soils are the consequence of delayed dissipation of
pore pressures (consolidation). However, we know that in clays secondary
consolidation or creep occurs and even for sands there are observable con-
tinuing strains at constant effective stress. We have also assumed that the
primary source of energy dissipation for soils comes from soil plasticity, per-
manent rearrangements of particles. However, an alternative route to the
dissipation of energy comes from the addition of viscosity as an element of
the constitutive response dependent on rate of strain.

A simple parallel model (Fig. 59a) would then say that:

σ = kε+ λε̇ (109)

where ε̇ is the strain rate. For a sinusoidal variation of strain with time
ε = α sinωt the stress will be:

σ = kα sinωt+ λωα cosωt = α
√

k2 + λ2ω2 sinωt+ φ (110)

where tanφ = λω/k is a phase angle representing a lag between strain
and stress. The typical stress strain response follows an ellipse as shown
in Fig. 59b. We can contrast this with the typical response seen in cyclic
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Figure 59. Viscoelastic model.
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loading of soils (Fig. 59c) which shows a sharp change in stiffness on reversal
of the direction of straining—a character of response that we can more easily
match within an elastic-plastic modelling framework.

We can calculate a damping ratio from the ratio of the energy dissipated
in each cycle (the area of the ellipse) to 4π times the maximum elastic
energy stored (the area of the shaded triangle). The energy dissipated
through viscosity is: ∫ 2π/ω

0

σ
dε

dt
dt = πλωα2 (111)

The maximum elastic energy stored is

1

2
σε =

1

2
kα2 (112)

so that the damping ratio is:

ξ =
λω

2k
(113)

and depends on angular frequency ω.

14 Strain-Based Models

The results of cyclic tests on soils are typically presented in terms of curves
showing the degradation of secant modulus with cyclic strain amplitude and
the increase of damping with cyclic strain amplitude (Fig. 48). We can use
these curves—which should implicitly be mutually consistent—to generate
a strain-space model of deviatoric soil behaviour for static and irregular
cyclic loading. This section is inspired by the model presented in Itasca
(2000) .

Given information about secant stiffness, Gs(γ), we can convert this to
the more useful information about tangent stiffness:

Gs =
τ

γ
Gt =

dτ

dγ
= Gs + γ

dGs

dγ
(114)

We will assume that this relation will apply along any strain path from
a point of strain reversal. The initial loading is seen as a special case in
which the stress:strain relation is scaled down by a factor of 2 from the
general version described by (114): this is the so-called Masing rule. The
general character of the response that such a model will describe is shown
in Fig. 60a.

This implied modelling procedure can be seen as a generalisation of the
Mroz-Iwan-Prevost approach to the modelling of the undrained—deviatoric—
response of soils using fields of hardening moduli. Fig. 61 shows deviatoric
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Figure 60. (a) Masing rule for stress:strain response: geometry of AB is
identical to geometry of BC but both stress and strain are scaled by a factor
of 2; (b) cycles within cycles.

views of principal stress space (but it could equally be some other devia-
toric view of general stress space) with three different sets of initial ‘yield’
surfaces—these are drawn as circles for illustrative purposes. It is supposed
that there is a certain distortional stiffness associated with the space within
the smallest ‘yield’ surface and between each subsequent pair of surfaces.
The stress state must always lie within all the ‘yield’ surfaces and the sur-
faces move with the current stress in order to ensure that this rule is not
broken. The right hand diagram of each pair shows the stress:strain re-
sponse, with the stiffness changing step by step as the successive surfaces
are crossed.

Thus Fig. 61a shows symmetrical paths AB and AC which pick up iden-
tical stress:strain response. Fig. 61b shows paths DE and DF starting from
a ‘negative’ initial stress D, perhaps the consequence of an episode of over-
consolidation. The initial stiffness for the reversal of direction of straining
DE is higher than that for the continuation of the ‘unloading’ straining
DF. Finally, Fig. 61c shows paths GH and GI starting from a much more
anisotropic initial state of stress where the ‘yield’ surfaces have become
bunched together as a result of the loading AB in Fig. 61a. The stress:strain
response now contrasts the continued loading GH, which is identical to the
corresponding section of path AB with the effect of strain reversal GI which
is not only initially much stiffer but also reproduces the response seen in the
initial loading AB but at twice the scale. And the geometry of the shifting
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Figure 61. Fields of hardening moduli for deviatoric modelling.
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Figure 62. Detection of points of strain reversal (1, 2, . . . 9) in complex
strain path.

‘yield’ surfaces shows very clearly why this should be so. The Masing rule
is demonstrated rather effectively.

With such a series of independent ‘yield’ surfaces the geometry of the
surfaces will all the time indicate whether a particular increment implies
a change in stiffness of not. In generalising the continuous description of
Fig. 60 we could use some implicit shape of loading surface which would
enable us to distinguish between unloading and continuing loading. Al-
ternatively we require some means of deciding whether we are continuing
to strain the soil, with a consequent steadily reducing shear stiffness, or
whether we have a point of strain reversal, in which case we have an imme-
diate jump of stiffness to the initial fully elastic value. Fig. 60b illustrates
the general scheme for a single degree of strain freedom. Initial loading AB is
followed by unloading/reversal BC with an immediate jump in tangent stiff-
ness. Reversal at C gives rise to a further jump. The unloading/reloading
cycle DED shows high stiffness each time the direction of straining changes,
and the stiffness reverts to the value that it had on path CF at the end of
the cycle. Similarly, reversal at F rejoins the original unloading path BC at
C and continues to G with a lower stiffness.

Given a rather random strain path as shown in Fig. 62, we can follow
Itasca (2000) and adopt the pragmatic rule that, so long as the distance
from the previous point of strain reversal is still increasing then we have
continuing modulus degradation. Once we detect a maximum in this dis-
tance then we start afresh. We might propose that once the distance from
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reversal point i exceeds the distance between reversal points i and i−1 then
the stiffness should revert to the value that it would have had for continued
straining beyond point i−1 from the previous reversal point i−2, provided
that was a longer path. The principles are rather straightforward when the
straining has just a single component. Their application becomes a little
more subtle when there are several degrees of deviatoric freedom (Fig. 62).

Itasca (2000) suggest several possible functions that might be used to
describe the modulus degradation curve.

A simple hyperbolic model:

Gs

Gmax
=

1

1 + γ/γ1
(115)

where the reference strain γ1 is chosen by fitting the observed strain ampli-
tude when the secant stiffness has fallen to half of the small strain value.

The cubic expression:

Gs

Gmax
= s2(3− 2s) (116)

where

s =
ln(γ2/γ)

ln(γ2/γ1)
(117)

has zero slope for s = 0, γ = γ2 and s = 1, γ = γ1 and can be used to
describe the modulus variation between these limits γ1 < γ < γ2. Beyond
these limits, for γ < γ1 and s > 1, G = Gmax and for γ > γ2 and s < 0,
G = 0. Within the operational range:

Gt

Gmax
= s2(3− 2s)− 6s(1− s)

ln(γ2/γ1)
(118)

In fact there is an additional limit if strain softening is to be avoided. The
value of s = slim for which the tangent modulus falls to zero is:

slim =
1

4

⎧⎨⎩
(
3 +

6

ln(γ2/γ1)

)
+

√√√√[(3 + 6

ln(γ2/γ1)

)2

− 48

ln(γ2/γ1)

]⎫⎬⎭
(119)

The corresponding value of strain is:

γlim =
γ2

(γ2/γ1)
slim (120)

and secant stiffness Gslim. Then for s < slim, Gt/Gmax = 0 and Gs =
Gslimγlim/γ.
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Figure 63. Stress:strain response predicted by different models.

Alternatively a sigmoidal model:

Gs

Gmax
=

a

1 + exp[− ln(γ/γ1)
ln(γ2/γ1)

]
=

a

1 + exp[s− 1]
(121)

where γ1 and γ2 are (different) reference strains and a is a soil constant. Or
a slightly more elaborate model:

Gs

Gmax
= b+

a

1 + exp[− ln(γ/γ1)
ln(γ2/γ1)

]
= b+

a

1 + exp[s− 1]
(122)

where b is a further soil constant and the optimum values of the reference
strains will no doubt differ in each case. Evidently if b �= 0 then the secant
modulus never falls to zero and the shear stress is (unrealistically) pre-
dicted to continue to increase indefinitely with continuing strain (Fig. 63).
For b �= 0 the damping ratio peaks and then falls as the strain amplitude in-
creases which also feels physically uncomfortable. These may be acceptable
disadvantages if this particular model enables a better fit to the available
data for an appropriate range of strains.

For each of these models we can fit a modulus degradation curve available
from the literature or from a programme of tests on our soil and calculate
the corresponding variation of damping ratio (Fig. 64). The values of soil
constants used are given in Tab. 1. It is interesting to note that the typical
damping suggested in published curves is lower than that emerging from any
of these models indicating some apparent incompatibility between modulus
degradation and damping findings. It is also interesting to compare the
stress:strain responses that emerge from the assumed link between secant
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Figure 64. (a) Modulus degradation with cyclic strain amplitude; (b) vari-
ation of damping ratio with cyclic strain amplitude. (Typical relationships
for non-plastic soils taken from Kramer (1996)).

Table 1. Values of soil constants

soil models
constant hyperbolic cubic sigmoidal 1 sigmoidal 2

γ1 0.03 0.000473 0.03162 0.02818
γ2 - 2.51189 0.01049 0.01
a - - 1.014 0.99
b - - - 0.01
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Table 2. Values of soil constants for simulations in Figs. 65-68

elastic
χ 100
α 0.6
critical state line
v̆ 1.1
Δv 0.6
β 0.6
strength and state parameter
Rc 1.2
ζR 1.1
distortional hardening
ζS 0.0005
dilatancy
ζD 0.5
reference stress
σrc 100 kPa

stiffness and strain (Fig. 63). The need for self-consistency between the
different aspects of the response is very evident.

The simple model described in §1.2 corresponds directly to the hyper-
bolic model of (115). Applying the Masing convention of Fig. 60 we can
discover how it behaves under conditions of cyclic loading. Given the in-
timate links between volume change and shearing—and between state pa-
rameter and current strength—it is of interest to look at the response under
undrained conditions and to discover how this response changes with the
initial density of the soil. The results are shown in Figs. 65-68. The values
of soil constants used in these simulations are given in Tab. 2. In each group
of figures the initial specific volume rises (initial density falls) from bottom
to top.

The figures show the expected dependence of response on initial density.
Loose soil liquefies—it loses all its strength with the build up of pore pressure
during the cycles of loading. Dense soil generates significant negative pore
pressures which stabilise the soil and maintain its strength. The hyperbolic
model gives rather large stress:strain cycles (Figs. 65 and 66) with rather
steep gradients and very rapid fall in incremental stiffness as the top of the
cycle is reached. This is a consequence of the rather low value of ζS (73)
or γ1 (115) used in the model: the higher the value of this soil constant the
faster the shear stress climbs (the shear stress has half its ultimate value for
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a strain γ = γ1) and the more the plastic strain near failure contributes to
the imposed amplitude of cyclic strain. There is nothing sacred about the
hyperbolic formulation apart from its simplicity—other functions could be
chosen which show a more steady fall in stiffness with strain.

Looking at the shear stress generation (Fig. 66) the loss of strength is
apparent as the pore pressure builds up. This is hidden when we look at the
generation of stress ratio (Fig. 65) because the available stress ratio does
not change hugely as the effective stress level falls (or rises).

The results are shown here in terms of shear stress τ and effective normal
stress σ′

z for the simple model but exactly the same results could be obtained
working with distortional stress q and effective mean stress p′.
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Figure 65. Cyclic undrained tests on hyperbolic model: stress ratio and
shear strain: initial specific volume (a) 1.1, (b) 1.3, (c) 1.5.
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Figure 66. Cyclic undrained tests on hyperbolic model: shear stress and
shear strain: initial specific volume (a) 1.1, (b) 1.3, (c) 1.5.
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List of Symbols

e elastic component §4
nc normally consolidated §2
oc overconsolidated §2
p plastic component §4
a soil parameter for strain degradation model §14
A area of sample §1.1
b separation of bubble and bounding surface §12.2
b soil parameter for strain degradation model §14
cu undrained strength §10
Cc compression index §10
Cs swelling index §10
dmax maximum particle size §6
dmin minimum particle size §6
d50 median particle size §6
D elastic stiffness matrix §4
D

ep elastic-plastic stiffness matrix §4
e void ratio §2
Eh horizontal Young’s modulus §6
Eo one-dimensional stiffness §2
Ev vertical Young’s modulus §6
f yield function §4
F bounding surface §12.2
F axial force in triaxial apparatus §1.1
g plastic potential function §4
G shear modulus §4.1
Gmax shear stiffness at very small strain §11.1
Gs = τ/γ secant stiffness §2
Gt = dτ/dγ tangent stiffness §2
H plastic modulus §9
Ii i = 1, 2, 3 invariants of the stress tensor §3
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J2 second invariant of deviatoric stress §3
k dummy constant §4.1
k stiffness §13
K bulk modulus §4.1
M strength parameter §4.1
M = q/p′ at critical state §10
M∗ dilatancy parameter §4.1
n = σ′

zmax
/σ′

z overconsolidation ratio §2
N reference volume for normal compression line §10
p′ = (σ′

a+2σ′

r)/3 volumetric stress (mean effective stress) §1.1
p′f mean effective stress at failure §10
p′i initial mean effective stress §9.1
p′o size of yield locus §10
p′r reference stress for plastic potential §9.1
P normal force §5
q = σa − σr distortional stress §1.1
qf distortional stress at failure §10
Q shear force §5
R = τ/σ′

z current mobilised strength in shear box §5
R ratio of sizes of bubble and bounding surface §12.2
Rc critical state stress ratio §5, §9.2
RD = dmax/dmin §6
Rp current peak strength of the soil §8, §9.2
s parameter for strain degradation models §14
slim limiting value of s §14
u pore pressure §1.1
v = 1 + e = ρs/ρd specific volume §2, §7
vκ reference value of specific volume for unload-reload line §10
Δv range of specific volume for critical state line §7
v̆ minimum specific volume for critical state line §7
vf critical state specific volume §7
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δW work done in a small increment of strain §1.1
W energy dissipated in cycle §11.1
ΔW elastic energy stored in cycle §11.1
δWd distortional work §1.1
W p plastic work §4.1
δWv volumetric work §1.1
x horizontal displacement §5, §9.2
z vertical displacement §5, §9.2
α exponent for stiffness §2
α strain amplitude §13
β soil parameter governing slope of critical state line §7
γ shear strain §2
γf shear strain to failure §11.1
γlim limiting value of γ §14
γm maximum shear strain §11.1
γ1 reference strain §14
γ2 reference strain §14
Γ intercept on critical state line §10
δij Kronecker delta §1.1
ε generalised distortional strain §2
ε̇ strain rate §13
δε vector of strain increments §4
δεa axial strain increment §1.1
δεp = δεa + 2δεr volumetric strain increment §1.1
δεq = 2(δεa − δεr)/3 distortional strain increment §1.1
δεr radial strain increment §1.1
εs shear strain §1.2, §5
εx, εy, εz principal strains §2
εz vertical strain §1.2
εσz vertical strain from compression §2, §9.2, §5
ετz vertical strain from shearing (dilatancy) §9.2, §5
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ζD dilatancy parameter §5, §9.2
ζR parameter linking strength and state parameter §8, §9.2
ζS soil parameter controlling plastic stiffness §9.1, §9.2
η = q/p′ stress ratio §1.1
ηi initial stress ratio §9.1
ηp limiting value of stress ratio §9.1
ηy hardening variable: yield stress ratio §9.1
κ slope of unload-reload line §10
λ viscous damping §13
λ slope of critical state line and normal compression line §10
Λ̇ plastic multiplier §4
Λ

λ− κ

λ
§10

ν Poisson’s ratio §10
νvh Poisson’s ratio linking the horizontal and vertical strain

increments
§6

ξ damping ratio §11.1,§13
ρd dry density §2
ρs density of soil mineral §2
δσ vector of stress increments §4
σ′

a axial effective stress §1.1
σc conjugate stress §12.2
σij total stress tensor §1.1
σ′

ij effective stress tensor §1.1
σ′

r radial effective stress §1.1
σrc reference stress for critical state line §7, §14
σ′

ref reference stress for stiffness §2
σx, σy, σz principal stresses §2, §3
σ′

z vertical effective stress §1.2, §5
τ shear stress §1.2, §2, §5
φ′ angle of shearing resistance §3,§4.1
φ phase lag between strain and stress §13
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φc angle of shearing resistance at critical state §10
φ′

m mobilised friction §1.1
φ′

p peak angle of shearing resistance §8
χ hardening parameter §9
χ soil parameter for stiffness magnitude §2
ψ = v − vf state parameter §7
Ψ1 composite soil parameter §9.2
Ψ2 composite soil parameter §9.2
Ψ3 composite soil parameter §9.2
ω angular frequency of harmonic strain variation §13
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1 Introduction

As already observed, when cyclic environmental loading is taken into consid-
eration, it becomes crucial to account for both huge numbers of cycles and
very long periods of time. Very often in geotechnics, distinguishing between
displacements/settlements due to cyclic loading and viscous effects becomes
quite difficult but in many problems, if the main issue is to quantify the ac-
cumulation of strains with time, this is essential. Moreover, in some cases,
when frequencies characterizing the loading are quite high, the two phe-
nomena are also strictly coupled and can influence each other. Therefore,
in this chapter, a very practical problem (the evaluation of displacements
along an unstable slope) is first broached. Subsequently the theory of stan-
dard visco-plasticity is briefly presented and an approach based on multiple
mechanism visco-plasticity is discussed.

As already specified in the introduction to this volume, with term envi-
ronmentally induced cyclic loading a large variety of loads are referred to.
Among these, to stress the importance of the time factor in evaluating the
response of geotechnical systems to this type of load, two very common prob-
lems will be tackled: (a) the interpretation of inclinometer data collected
along a potentially unstable slope and (b) the evaluation of the settlements
of an offshore structure due to wave loading. In the first case, the response
of partially activated landslides to the cyclic variation in the water table
due to intense seasonal rainfalls is employed to highlight the role of time
and of delayed plasticity when failure conditions are reached, or better when
additional resistant resources are absent. In the second case, with term, en-
vironmentally induced loading, the sea waves are intended and, in contrast,
the object consists of evaluating settlements of an offshore structures due
to cyclic loads of very small amplitudes under loading conditions very far
from the ultimate ones. In this last case the number of cycles is enormous
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whereas in the previous one it is not; in this case the frequency of loading
is quite high, whilst in the previous, frequencies are very low.

2 From Elasto-Plasticity to Visco-Plasticity:
Perzyna’s Approach

As can be easily inferred, the fabric rearrangement of the micro-structure
of soils takes place with time and is generally due either to physical agents,
chemical reactions or to the variation of loading conditions; in this latter
case, the time period during which such an evolution occurs depends severely
on the type of material considered: some minutes/hours when granular soils
are concerned (di Prisco and Imposimato, 1996), a few weeks/months for
clays and rocks. When a material is loaded, a stress wave passes through the
continuum. If the load increment induces a micro-structural rearrangement
within the continuum, at the micro-scale the stress distribution changes with
time and the micro-structural fabric continuously modifies. The two effects
are strictly linked and it is difficult defining which is the cause and which is
the consequence. In granular soils, for instance, the final micro-structural
configuration is reached passing throughout a huge number of intermediate
not equilibrated configurations: the final result is not unique but statisti-
cally determined. The time period necessary to obtain the final configura-
tion (several minutes) is the required amount to the micro stresses in order
to reach a final equilibrated distribution with the external applied macro
stresses. The internal fabric rearrangement is caused by the micro accelera-
tions, which develop in order to balance the externally imposed macro-load
increments. When a new equilibrated micro-configuration is reached, the
kinetic process may be assumed to be concluded. This physical time may be
interpreted as the time period during which plastic strains take place. For
this reason the term delayed plasticity may be considered to be more appro-
priate than visco-plasticity. In clayey soils the viscous processes occurring
at the micro-scale are strictly related to the micro-structural rearrangement
and the time scale dilates abruptly. Analogously, viscous effects in granular
materials are more evident when high confining pressures are taken into ac-
count (Lade, 1994). Indeed, when confining pressures are sufficiently severe,
grains are subjected to dramatic stress concentrations, which may cause lo-
cal grain crushes and the grains cease to be interpretable as inert particles.
Since the development of elastic strains does not require a micro-structural
rearrangement, the elastic response, which is necessarily linked to the cur-
rent internal micro-structure, can be assumed to be quasi-instantaneous.
The most simple way of experimentally analysing the time dependence of
the mechanical behaviour of materials is to perform load controlled tests.
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Standard creep tests are performed by imposing finite load increments fol-
lowed by variable time periods during which the boundary conditions are
kept constant. In soil mechanics, the most common tests are the oedometric
tests on saturated clays. As is well known, in this case, because of the con-
solidation phenomenon, it is sometimes quite delicate separating the effects
due to viscosity from those induced by the change with time in the pore
water pressure. Only by using theoretical tools such as that introduced
by Terzaghi with reference to one dimensional consolidation, may such a
goal be achieved. For many and various reasons, strain controlled test re-
sults obtained by imposing different strain rates or jump tests during which
the strain rate is varied instantaneously are more difficult of interpretation
(Tatsuoka et al., 2001).

As is well known, from an engineering point of view, the time factor plays
a key role in the following cases:

• The overconsolidation induced by viscous strains which develop with
time (ageing) influences dramatically the mechanical response of in
situ soils and consequently common engineering predictions. With
time, even if effective stress is kept constant, void ratio decreases.
When the material is subsequently loaded, it behaves like an overcon-
solidated material, but only for limited increments of load.

• During undrained load controlled tests, even though loads are kept
constant, both when clays (Singh and Mitchell, 1968) and loose sands
(di Prisco and Imposimato, 1999) are considered, unstable phenomena
may take place with time. In this case the phenomenon is not a typical
tertiary creep such as that experimentally observed when rocklike ma-
terials are tested. The kinematic constraint on the volumetric strain
rate (ε̇vol = 0), as well as the time dependency of the material me-
chanical behaviour, induce a variation in the effective state of stress:
in particular a decrease in the effective mean pressure. When the
initial effective stress level is sufficiently high, unexpected specimen
collapses may occur.

• Also under drained conditions, when the system is statically redun-
dant, viscous effects may induce relevant changes in the stress state
(earth forces against retaining structures may change with time, deep
anchorage forces in rocks and fine soils may decrease severely with
time, slope movements may develop with time even without any load-
ing perturbation).

• When rocklike materials are considered, one dimensional creep tests
are usually performed. In this case, even though the load is kept
constant, unstable responses may occur: after a previous stable phase
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during which a continuous decrease in strain rate takes place (primary
creep), the mechanical response becomes unstable, i.e. the strain rate
increases (tertiary creep). In this case the phenomenon is very com-
plex because damage evolution and fracture propagation with time
should be taken into account at the same time.

2.1 Constitutive Modelling

Obviously, standard elasto-plasticity cannot be employed to simulate any
one of the previous time dependent mechanical phenomena. In fact, as
was stressed in the previous chapter, elasto-plasticity disregards a priori
the time factor and it assumes the mechanical response of the material to
any load increment to be instantaneous. For this reason, the elasto-plastic
constitutive relationship can be written as it follows:

ε̇ij = ε̇elij + ε̇plij = Cep
ijhkσ̇

′

hk (1)

where Cep
ijhk stands for the elasto-plastic compliance tensor, ε̇elij is the elastic

strain increment tensor, ε̇plij is the plastic one and the dot stands for the time-
derivative, ε̇ij and σ̇′

hk for the strain and the effective stress rate tensor,
respectively. As is evident, (1) implies that strains cannot evolve without
any effective stress perturbation.

To make a plastic constitutive model time-dependent, many different ap-
proaches have been conceived. Here, the two most common ones will be
briefly cited. The first one is more suitable for capturing the effects of
physical/chemical agents (causing for instance damage processes) on the
mechanical behaviour of materials, the second, which is referred to as de-
layed plasticity, and is suitable for describing the time dependent mechanical
response to mechanical perturbations.

Approach 1 - Within the framework of standard single potential elasto-
plasticity, two sets of hardening parameters are defined: αij and ψi: the
former depending, as usual, on irreversible strains εplrs, and the latter de-
pending directly on time t. Therefore, the yield function f (Olszak and
Perzyna, 1966; Nova, 1982; Sekiguchi, 1984 and Kamei and Hirai, 1990)
can be symbolically written as follows:

f = f
(
σ′

ij , αij , ψi

)
(2)
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The hardening rules for the two sets of state variables are

α̇ij =
∂αij

∂εplrs
ε̇plrs

ψ̇i =
∂ψi

∂t
ṫ,

(3)

where ∂ stands for the partial derivative, whereas t and ṫ stand, respectively,
for the time and the time rate. By imposing both flow and consistency rules:

ε̇plij = Λ
∂g

∂σ′

ij

ḟ =
∂f

∂σ′

ij

σ̇′

ij +
∂f

∂αij
α̇ij +

∂f

∂ψij
ψ̇ij

(4)

where g stands for the plastic potential, the plastic multiplier Λ is obtained:

Λ = −

∂f

∂σ′

ij

σ̇′

ij +
∂f

∂ψi
ψ̇i

∂f

∂αij

∂αij

∂εplrs

∂g

∂σ′

rs

(5)

Plastic strains are easily distinguished from the viscous ones since in
(5) two distinct terms can be easily separated and the relative constitutive
parameters easily calibrated. Nevertheless, the coupling between the two
mechanisms is imposed by the denominator in (5).

Approach 2 - According to the delayed plasticity theory introduced by
Perzyna (Perzyna, 1963), the mechanical response once more is defined by
the superimposition of an instantaneous elastic and a delayed plastic strain
rate tensor, but the visco-plastic strain increment ε̇vpij substituting ε̇plij in (1)
is defined, in this case, as follows:

ε̇vpij = γ̃ Φ (f)
∂g

∂σ′

ij

(6)

where Φ (f) ≥ 0 is the viscous nucleus and γ̃ is a positive constitutive pa-
rameter. This means that the time dependence is introduced by modifying
the flow rule and by abolishing the consistency rule. The plastic poten-
tial defines the direction of the visco-plastic strain rate tensor while the
yield function influences its modulus by means of the viscous nucleus Φ. As
consistency rule is abolished, the yield function may be either positive or
negative, without any constraint, i.e. the stress state may be either exter-
nal or internal with respect to the yield locus. The most general approach
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of such a visco-plastic theory assumes a viscous nucleus depending on the
over-stresses (Eisenberg and Yen, 1981and Tsakmakis, 1996), which may be
interpreted from a micro-structural point of view as a measure of the un-
balanced forces. Phillips and Wu (1973) suggest in (6) f to be substituted
by the distance between the current state of stress and a conjugated state
of stress on the current yield locus obtained by means of a radial mapping
rule.
Implicitly, (6) assumes that the yield function may be used as a scalar
measure (and from this the great success of this simplified approach derives)
of the probability of occurrence with time of irreversible strains.
From (6) one derives that, even if the effective state of stress is kept con-
stant, delayed plastic strains may develop with time. If strain hardening is
assumed, also state variables will change with time, and, consequently, the
yield locus, too (Michael and Katona, 1984, Adachi et al., 1987, di Prisco
and Imposimato, 1996).
The viscous nucleus is generally assumed to be a monotonic function of f
and, in particular:

dΦ

df
≥ 0 (7)

(6) and (7) imply that, if the effective stress state is kept constant and,
for instance, the plastic potential is assumed to be exclusively dependent
on the effective state of stress, in case of positive hardening, strain rates
continuously decrease with time. Indeed, the strain acceleration tensor is
defined as follows:

ε̈vpij = γ̃ Φ̇ (f)
∂g

∂σ′

ij

+ γ Φ (f)
∂

∂t

(
∂g

∂σ′

ij

)
(8)

where

Φ̇ =
∂Φ

∂f

∂f

∂t
=

∂Φ

∂f

(
∂f

∂σ′

ij

˙σ′

ij −H Φ (f)

)
(9)

H = − ∂f

∂αij

∂αij

∂εvprs

∂g

∂σ′

rs

(10)

being H the hardening modulus. Therefore, from (7), (9) and (10), since
Φ (f) ≥ 0 and σ̇′

ij = 0, when H > 0, Φ̇ < 0 and, as a consequence, if

∂

∂t

(
∂g

∂σ′

rs

)
= 0 it derives that

∥∥ε̇vpij ∥∥ always reduces with time. On the

contrary, when H < 0, tertiary creep can be reproduced, since in this case
a continuous increase in the visco-plastic strain rate modulus is obtained.
In case of two different plastic mechanisms are accounted for, even the
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transition from primary to secondary and tertiary creep can be simulated
(Fig. 1).
When limit state is reached, state variable evolution stops. As a conse-
quence, during load controlled tests, if the load imposed overpasses material
strength and the mechanical response is assumed to be ductile, strain rate
assumes a positive constant value Indeed, under these conditions H = 0

and
∂

∂t

(
∂g

∂σ′

ij

)
= 0 and, as a consequence, during creep tests,

∥∥ε̈vpij ∥∥ = 0.
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Figure 1. Schematic representation of the unstable mechanical response
of a rocklike material during a standard compression triaxial creep test (εa
stands for axial strain).

The positive constitutive parameter γ̃ in (6) influences the strain rate and
consequently the rapidity with which the asymptotic strain value is reached.
When γ̃ → ∞ the mechanical response becomes instantaneous and standard
elasto-plasticity is recovered. To describe the material’s mechanical response
during the evolution of time, even the choice of the viscous nucleus is quite
important. For instance, when either both f is linearly dependent on σ′

ij

and Φ (f) on f or, more generally, when
∂Φ

∂σ′

ij

is constant, this visco-plastic

approach reduces to the standard Maxwell viscous model.

By contrast, a standard definition for Φ (f) is to assume:

Φ (f) =
〈
f α̃
〉

(11)

where α̃ is a constitutive parameter and brackets impose to consider only
the positive branch of f , whereas for negative values of f the viscous nucleus
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is assumed to be nil. This implies a strong non-linearity in the definition
of the viscous nucleus, reinterpreting, in the light of visco-plasticity, the
standard Kotter constitutive modelling constraints of plasticity (fΛ = 0,
ḟΛ = 0).

An alternative highly non-linear definition for Φ (f) is given here below:

Φ (f) = eα̃f ; (12)

in this case, the viscous nucleus is always positive. Even in case of f < 0,
that is within the yield locus, plastic strains may develop and yield locus
may evolve. Owing to this hypothesis, ageing phenomenon can be easily
simulated.
When this definition for the viscous nucleus is employed, it is possible to
demonstrate that:

lim
t→+∞

∫ 0+

t

ε̇vpij (τ) dτ = lim
t→+∞

∫ 0+

t

γ̃ Φ (f)
∂g

∂σ′

ij

dτ = +∞ (13)

i.e., when the time period becomes unlimited, although the strain rate pro-
gressively tends to decrease in size, plastic strains do not reach a finite value.
From an engineering viewpoint, this is not a strong shortcoming, since with
time the accumulation rate of irreversible strains tends to zero.

Generally, the calibration procedure for viscous parameters γ̃ and α̃ is
totally uncoupled with respect to the calibration of the plastic parameters.
At a first approximation, strain controlled test results are usually considered
to be time-independent and are used to calibrate the plastic parameters. By
contrast, γ̃ and α̃ are easily calibrated on the experimental data derived from
standard creep tests.
During creep tests, when a load increment is instantaneously applied, the
image point of the effective state of stress can stay outside the yield lo-
cus, (Fig. 2a) and Φ (f) can assume large positive values. Subsequently, it
rapidly decreases. When a very long time period between two subsequent
incremental load steps elapses, if the viscous nucleus is chosen according to
(12), the effective state of stress, at the end of the time period, will stay
within the yield locus, the Φ (f) value remains small and the initial slope of
the axial strain versus time curve is not steep. On the contrary, when the
specimen is rapidly loaded, i.e. the load increments are very close to each
other, the effective state of stress continuously remains outside the yield lo-
cus, the Φ (f) value is quite large and the strain increment is quantitatively
relevant.

To discuss the viscous nucleus definition (12) and the Perzyna’s assump-
tion (6), in the following both undrained and q-constant experimental tri-
axial test results will be briefly considered, respectively.
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Figure 2. Yield function in the triaxial plane (q− p′, where q is the differ-
ence between the axial and the radial stress, while p′ is the effective mean
pressure) and effective stress state: (a) high stress rate; (b) low stress rate.
Δt is the time period elapsing between two different stress increments.

1. Under undrained triaxial conditions, even if the total state of stress is
kept constant, delayed strains may cause an increase in pore pressure.
The increase in pore pressure is associated with a decrease in the ef-
fective mean pressure and an increase in the effective stress level. In
turn this may cause a further increase in pore pressure. This process
may converge or not, it depends on the load time history imposed and
on the stress level at which the drainage valve is closed. In Fig. 3 the
effective stress path corresponding with a collapsing response relative
to a loose sand specimen, as well as the axial strain and the pore pres-
sure experimental and numerical curves, are shown. As is suggested
in Fig. 3c, during the undrained creep test, the effective stress path
enters into the yield locus and (at the beginning) the axial strain rate
decreases rapidly. When the yield locus is reached again (the corre-
sponding stress level (point B) is much higher), the axial strain rate
increases and collapse takes place. In Fig. 3 experimental data are
compared with numerical simulations obtained by employing a single
potential strain hardening visco-plastic model with a viscous nucleus
definition coincident with that expressed by (12) (di Prisco and Im-
posimato, 1999). Viscous models, characterized by a single plastic
potential and a standard definitions for the viscous nucleus, that is
allowing the development of irreversible strains only outside the yield
locus, would not be capable of reproducing these experimental results.
In fact, within the yield locus the elastic strains, associated with the
decrease in the effective mean pressure would cause a volumetric di-
lation and the effective stress path would have stopped.

2. When drained triaxial q-constant creep tests are performed on loose
sand specimens, and, in particular, when unloading steps are im-
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Figure 3. Loose sand specimens; experimental results and numerical sim-
ulations concerning undrained creep tests at different initial stress levels
(p′0 = 100kPa): (a) axial strain versus time, (b) pore pressure u versus
time, (c) schematic representation of the effective stress path for undrained
creep tests (di Prisco and Imposimato, 1999).

posed (Δp′ < 0), the material suffers an instantaneous dilatative
volumetric response, followed by a continuous decrease in volume
(Fig. 4): capital letters refer to the instants of time corresponding
with cell pressure decrements. This mechanical response seems to con-
firm the distinction introduced by Perzyna (Perzyna, 1963) between
reversible/immediate and plastic/delayed strain increments. Indeed,
the decrement in the effective mean pressure necessarily causes a neg-
ative (dilation) volumetric elastic strain increment, while the delayed
plastic part is positive. By increasing the stress level, the instan-
taneous elastic effect seems not to change, but the following plastic
evolution becomes more quantitatively relevant. In Fig. 4c the relative
numerical simulations obtained by means of the previously cited con-
stitutive model are illustrated. The quantitative difference between
experimental and numerical results is mainly due to the elastic nu-
merical volumetric strains which are too small with respect to the



www.manaraa.com

Creep Versus Trans. Load. Effects in Geotech. Problems 237

experimental ones (Figs. 4a, b and c).
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Figure 4. Triaxial q constant standard compression test on a loose Hos-
tun RF sand specimen: (seven finite load decrements, after di Prisco and
Imposimato (1996)). a) Effective stress path, b) volumetric experimental
response, c) volumetric numerical response.

From a numerical point of view, the Perzyna’s approach (Perzyna, 1963)
allows us not to define a loading-unloading criterion. This makes simple the
numerical implementation of this kind of constitutive models into F.E.M.
codes (Hueghes and Taylor, 1978). Unfortunately, the numerical conver-
gence to the solution is deeply linked to the chosen time step. The suitable
time step depends on many factors: (i) the stress rate, (ii) the current stress
level and (iii) the stress increment intensity, i.e. the current value of the
viscous nucleus Φ (f). The time step must be controlled by the Φ (f) value:
when Φ (f) is small, Δt may be suitably increased.
Moreover, if the consistency rule is abolished, evolving rules for model con-
stitutive parameters on state variable can be easily introduced. This is par-
ticularly useful when large strains take place, as during strain localization
or during particular cyclic stress paths (di Prisco et al., 1993), causing large
volumetric strains. For instance, when sands are considered, a dependency
of the constitutive parameters on the relative density may be assumed and
a unified approach for any initial density may be employed (di Prisco et al.,
2002).
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2.2 Impulsive and Cyclic Perturbations

An interesting application of visco-plastic theory consists in the analysis
of the mechanical response of materials to impulsive loads. In this case,
the load F is increased for a fixed time period (Fig. 5). To describe the
mechanical response of the system not only the load increment amplitude
F̄ but even the impulse I defined as:

I =

∫ t0+Δt

t0

F (τ) dτ = F̄Δt (14)

must be assigned. As is known, an elasto-plastic response is totally inde-

�

,

�

,

��

Figure 5. Schematic representation of an impulsive load.

pendent of impulse I, at least when macro-inertial effects are disregarded;
on the contrary when a visco-plastic approach is employed, the response
becomes severely dependent on the impulse intensity I and in particular
when the material response becomes potentially unstable. When, for in-
stance, H < 0, collapse may occur or not according not only to F̄ but more
markedly to I. To stress this point, di Prisco et al. (2007) have numeri-
cally analysed, by means of a SEM (Spectral Element Method) numerical
code within which a visco-plastic strain hardening constitutive model is im-
plemented, the response of a biaxial granular soil specimen subjected to a
very rapidly oscillating vertical load. By changing the frequency and the
constitutive parameters defining the viscous nucleus, the accumulation rate
in irreversible strains changes abruptly (Fig. 6): in some cases the collapse
occurs in some others it does not. This dependence, here discussed with re-
spect to very rapid impulsive loads, when the characteristic time is changed,
that is when silty sands as well as silts or clayey sands are considered, may
become quite important even in the case of environmentally induced load-
ing characterized by very low frequencies. Analogously, under symmetric
cyclic loading, the damping ratio, defined as the ratio between the area of
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Figure 6. Bidimensional dry dense sand specimens: (a) isotropically consol-
idated under a confining pressure σc of 100 kPa and axially loaded according
to (b) four different loading time histories, (c) numerical vertical stress-
strain curves (visco-plastic non-local version of the model after di Prisco
et al. (2007)).

the cycle WD and the elastic stored energy WS (Fig. 7a), severely depends
on the loading frequency. In particular, in contrast with what is assumed
by standard elasto-plasticity, according to which the damping ratio depends
on the strain amplitude but not on the loading frequency, visco-plasticity
implies a reduction in the damping ratio at increasing values of frequency
(Fig. 7b). The experimental data of Fig. 7b clearly show, however, that
for high frequencies both plasticity and elasto–visco-plasticity fail to repro-
duce the experimental evidence. Nevertheless, here in the following, high
frequencies and dynamic conditions will be disregarded. As a consequence,
the visco-plastic approach will be accepted as a suitable tool for simulating
the mechanical response of the material.

To stress such a point, let take now into consideration, as already antic-
ipated in the introduction, the case of a landslide with a geometry that,
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Figure 7. Influence of frequency on the damping ratio D (experimental
data concerning torsional tests on a silty sand - where τ and γ stand for
the shear stress and strain, respectively - after Meng (2003)):(a) schematic
representation of the method used for the evaluation of D; (b) damping
ratio D versus loading frequency (experimental data vs elasto-plastic and
elastovisco-plastic trends).

for the sake of simplicity, can be modelled by an infinitely long slope. In
particular, the response of the landslide to intense rainfalls is analysed un-
der the hypothesis that the more superficial partially saturated layers are
sufficiently permeable to allow the infiltration of the water. After the rain-
ing event, an increase in the water table is therefore expected. The time
lag between the meteorological event and the increase in the water table
is mainly a function of the hydraulic characteristics of soils under partially
saturated conditions but this problem is not faced here below. When an
increase in the water table level zw is recorded by piezometers (Fig. 8a),
an increase in the displacement rate is also recorded by the inclinometers
positioned in the unstable area (Fig. 8b). Subsequently, with time, owing
both to the evapotranspiration process and seepage along the slope that
takes place constantly with time, the water table level reduces again and
the landslide stops evolving. By putting in order a long seasonal succession
of events and by plotting the data in a semi-logarithmic plane, in case of
a progressive stabilization of the process a curve similar to that plotted in
(Fig. 8c) results. The inclination β is thus a function of the amplitude of
variation in zw, but in particular both of the frequencies of cycles and of
their duration. The limit value for β, when the maximum amplitude of
cycles tends toward zero, is β0 (the viscous parameter for the system) that,
in case of an elasto perfectly visco-plastic approach employing a viscous
nucleus definition of the type defined in (11), is nil, but it is nil even in
the case of cycles characterized by small amplitudes, not sufficiently large
for the fulfilment of condition f > 0, coinciding with the activation of the
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plastic condition.

zw

t (a)
s

t (b)
s

log t

β

(c)

Figure 8. Schematic representation of the water table oscillation zw versus
time (a), displacements s versus time (b) and displacement versus time in
semi-logarithmic scale.

To put in evidence in particular this last item, hereafter the response of the
landslide to a sequence of cyclic variations in the water table is numerically
analysed by employing the one dimensional scheme illustrated in (Fig. 9),
where H̄ stands for the projection of the stratum thickness along the vertical
direction, h for the thickness of the saturated zone of the stratum, α for the
slope inclination, whereas, as usual, N and T for the forces acting normally
and parallely to the slope, equilibrated with respect to the material weight
and seepage forces.
By imposing under dynamic conditions the balance of momentum along the
interface plane between the soil deposit and the underlying slope:

T = TS −mẍ, (15)

where ẍ stands for the stratum acceleration along the slope, m for the soil
mass of one unit wide soil deposit element m = W/g, with:

W = γd
(
H̄ − h

)
L+ (γ′ + γw)hL (16)
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Figure 9. Schematic representation of the soil stratum on an inclined plane.

where g stands for the acceleration due to gravity, γw for the water unit
volume weight, L for the landslide length, γd and γ′ for the dry and buoyant
unit volume soil weight, respectively;

TS = W ′ sinα+ γwhL sinα (17)

whereas:
W ′ =

[
γd
(
H̄ − h

)
+ γ′h

]
L (18)

To determine T of (15), a very approximate mechanical scheme has been
employed: the shear band thickness Δs during the process has been assumed
to be constant, a priori known and within it both shear strain γ and shear
strain rate γ̇ to be constant, that is:

γ̇ =
ẋ

Δs
. (19)

Thus, by assuming within the band a rigid–perfectly-plastic visco-plastic
one dimensional simple shear constitutive relationship, it follows that:

γ̇ =
γ̃

σ′

n

〈τ − τf 〉 (20)

where γ̃ is the viscous parameter, whereas τ and σ′

n stand for shear and
normal stresses, respectively. Since, by imposing the balance of momentum
for a unit wide soil element along the direction orthogonal to the slope:

σ′

n =
W ′ cosα

L

τ =
T

L

(21)

by assuming a Coulomb-like yield locus:

τf =
W ′ cosα tanφ′

L
(22)
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where φ′ is the material internal friction angle and by substituting (18),
(19), (21) and (22) into (20):

ẋ

Δsγ̃
=

〈
tanα+

γwh sinα−mẍ(
γd
(
H̄ − h

)
+ γ′h

)
cosα

− tanφ′

〉
(23)

Once the excursion of the water table is imposed, throughout the integration
of (23), the evolution of the system with time can be evaluated. In Fig. 10
the response of the system to the sinusoidal trend of h illustrated in Fig. 10a
is represented. The integration of the non-linear differential equation (23) is
quite simple. Cyclically, the accumulation of irreversible displacements will
take place when the first two terms within brackets are greater than term
tanφ′. By increasing either the shear band thickness or the viscous material
parameter γ̃ (i.e. by decreasing the characteristic time), the displacement
rate increases and, as a consequence, even the magnitude of the irreversible
displacements accumulated with time, in correspondence with the same hy-
draulic perturbation, will increase. Since an elasto–perfectly visco-plastic
mechanical behaviour is assumed, ratcheting will take place without any
self feeding evolution. Indeed, since the accumulation of irreversible strains
cannot induce any evolution of the constitutive relationship, the system will
react always at the same manner to the same hydraulic perturbation. In
contrast, if either hardening or softening are assumed, either stabilization
processes or collapse will be attained, respectively. This example clearly
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Figure 10. Schematic representation of the mechanical response of the
system during the evolution of time: (a) water table excursion; (b) dis-
placement x and displacement rate ẋ versus time (α = 28, φ′ = 34.5,
γd = 15.8 kN/m3, γ′ = 9.2 kN/m3, H̄ = 40 m, Δs = 0.5 m and
γ̃ = 7.1 · 10−6 kPa/s).
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shows once more that when a visco-plastic constitutive relationship is as-
sumed and the perturbation applied to the system is essentially asymmetric
(in this case, because of the slope inclination, even the initial state of stress
is severely asymmetric) the ratcheting is due to the absence of stabilizing
factors.

3 Evaluation of Ratcheting Displacements in
Granular Materials

In spite of the large number of constitutive models available in the literature
based for instance on bounding plasticity theory, it is quite difficult finding
constitutive approaches capable of quantitatively simulating the response
of granular materials under repeated loading processes in particular when
the stress state, around which the cyclic perturbation takes place, does
not belong to the hydrostatic axis. In this section a theoretical framework
based on multi-mechanism visco-plasticity is outlined. This is based on
some theoretical assumptions that can be experimentally justified.
According to the approach introduced here below, that is designed to be
quite general and not necessarily related to a certain model but adaptable
to different visco-plastic models, (1) can be modified by adding two further

terms and by substituting ε̇plij with ε̇vpij :

ε̇ij = ε̇elij + ε̇vpij + ε̇cij + ε̇rij (24)

where ε̇elij refers to the elastic/reversible strain rates describing the response

of the material at very small strains (that is γ < 10−5), ε̇vpij to the mechan-

ical response of the material at large strains (that is γ > 10−3), whereas
ε̇cij to the intermediate response. Essentially, this term is hereafter intro-
duced to simulate both the dissipated energy during the single cycle and the
reduction in the material stiffness due to the increase in the loop size. Fi-
nally, ε̇rij is added to reproduce the progressive accumulation of irreversible
strains due to repeated loading (the superscript index r stands indeed for
ratcheting). The approach is based on the idea of calibrating the constitu-
tive parameters relative to the four different mechanisms separately and by
means of different experimental test results.
In particular, as is schematically suggested in Fig. 11, the first terms (the
elasto strain-hardening visco-plastic ones) are conceived in order to simulate
under standard load controlled cyclic tests a typical shake down response.
This implies that, when the amplitude of the cycle is sufficiently small,
irreversible strains do not develop (Fig. 11a). The third visco-plastic mech-
anism is conceived to simulate a response dominated by an ideal plastic
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adaptation where any accumulation in irreversible strains during the single
cycle is missing: ratcheting is not contemplated. This implies a dissipating
response of the system not associated with any evolution of the internal
micro-structure (Fig. 11b).

�
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Figure 11. Schematic representation of the mechanical response of the
system in case of shake down (a) and ideal-plastic adaptation (b).

In contrast, the last plastic mechanism is devoted to accounting for the
ratcheting phenomenon. According to its definition, this can be suitable for
reproducing (i) a ratcheting process characterized by a constant accumula-
tion rate (curve a of Fig. 12 and response of Fig. 13a) - that, in the following,
will be named perfect ratcheting - (ii) a ratcheting process characterized by
a progressive stabilization of the response, that is a sort of progressive plas-
tic adaptation (i.e. by a progressive reduction in the accumulation rate)
(curve b of Fig. 12 and response of Fig. 13b), (iii) an unstable ratchet-
ing process characterized by a continuous increase in the accumulation rate
(curve c of Fig. 12 and response of Fig. 13c). As will be clarified below, in
the case of no coupling between the principal plastic mechanism and that
introduced to capture the ratcheting phenomenon, case (a) is necessarily
obtained, whereas responses (b) and (c) can be simulated only by coupling
the two mechanisms. To highlight this concept, in Fig. 14 the evolution of
the yield function associated with the principal plastic mechanism, due to
the accumulation of irreversible strains, is schematically drawn. In case (a)
the yield locus does not evolve as a function of the irreversible strains due
to ratcheting εrij ; in case (b) these cause a positive hardening, i.e. in case
of isotropic hardening, an increase in size of the yield locus. By contrast, in
case (c), the evolution is negative (strain softening), i.e. a yield locus shrink-
age. As far as the principal plastic/visco-plastic mechanism is concerned,
the choice can be quite general, but with reference for instance to granu-
lar materials, it is quite suitable employing an anisotropic hardening and a
non- associated flow rule. Indeed, the anisotropic hardening is essential for
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Figure 12. Schematic representation of the evolution of medium strain
accumulation rate versus number of cycles Ncyc for the three different re-
sponses schematically illustrated in Fig. 13.

�

� (a)

�

� (b)

�

� (c)

Figure 13. Schematic representation of the mechanical response of the
system in case of perfect ratcheting (a), progressive stabilization toward the
ideal plastic adaptation (b) and unstable cyclic response (c).

q

p’

b

c a

Figure 14. Schematic representation of the coupling between the ratcheting
plastic mechanism and the principal one.

capturing the mechanical response of granular materials in case of cycles of
large amplitudes (which are associated with large strains) either in the devi-
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atoric plane or with a continuous rotation of the stress tensor principal axes.
To exemplify it, in Fig. 15 experimental data obtained by employing a true
triaxial apparatus (Lanier et al., 1991) are compared with numerical simu-
lations retrieved by means of single potential anisotropic strain hardening
elasto-plastic constitutive model (di Prisco et al., 1993). It is worth noting
that if an isotropic strain hardening was used to simulate these experimen-
tal results, a sort of “infinitesimal” circle in Fig. 15c would be obtained.
Indeed, in this case the mechanical response of the soil specimen would be,
after the first monotonic loading, totally elastic. Additional observations
are useless, since this subject was already discussed in the previous chapter.

σ’xσ’y

σ’z (a)

ε’xε’y

ε’z

0

0.02

0.04

(b)
ε’xε’y

ε’z

0

0.02

0.04

(c)

Figure 15. Large amplitude cyclic tests in the deviatoric plane (where
σ′

x, σ
′

y , σ
′

z are the effective principal stresses and ε′x, ε
′

y, ε
′

z the principal
strains) performed on an RF Hostun sand specimen (after Lanier et al.
(1991)): imposed stress path (a), experimental data (b), numerical simula-
tions obtained by employing a isotropic strain hardening and an anisotropic
strain hardening elasto-plastic constitutive model (c).

3.1 The Multimechanism Model

The hierarchical approach here discussed assumes a complete uncoupling
between the principal plastic mechanism and the nesting multimechanism
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illustrated hereafter. For the sake of simplicity, even the single nesting visco-
plastic mechanism are uncoupled from each other. This assumption allows
us to define the hardening of the nth yield locus as a function uniquely of
the irreversible strains governed by the corresponding nth plastic potential.
Multi-mechanism plastic models, introduced in the 1960s, Fig. 16a, by Mroz
(1967) and applied to soils for instance by Prevost (1985), Prevost and
Keane (1990) and Prevost and Popescu (1993), are usually characterized
by a variable number N∗ of plastic mechanisms, controlling the quality of
the numerical simulations. A simple visco-plastic version is here described
(di Prisco and Zambelli, 2009), according to which:

ε̇cij =

N∗∑
n=1

ε̇nij (25)

where

ε̇nij = φ∗

n (fn)
∂gn
∂σ′

ij

, (26)

whereas fn and gn are the yield function and the plastic potential associ-
ated with the nth plastic mechanism, respectively, whereas the nth viscous
nucleus for the sake of simplicity is defined as below:

φ∗

n = α∗ 〈fn〉 (27)

where, as stated above, the brackets imply a nil value for φ∗

n when fn < 0
whereas α∗ is a constitutive parameter. Each yield locus fn rotates in the
effective stress space, keeping its opening constant, in accordance with the
evolution of its axis χn

ij (Figs. 16b and c):

fn = βnI∗n1 +
√
J∗n
2 (28)

with I∗n1 =
√
3σ′

ijχ
n
ij , J

∗n
2 = s∗nij s

∗n
ij , s

∗n
ij = σ′

ij−
1√
3
I∗n1 χn

ij . By substituting

in (28) βn = 0, gn is also obtained. The evolution of χn
ij is described by a

hardening rule of Prager’s type (Prager and Druker, 1952):

χ̇n
ij = wnė∗nij (29)

where wn are constitutive parameters, while:

ė∗nij = ε̇nij −
1√
3
J∗n
1 χn

ij with J∗n
1 =

√
3ε̇nijχ

n
ij (30)

This model is capable of describing (i) the non-linear response of the mate-
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Figure 16. Schematic representation of nesting mechanisms: in the devia-
toric plane (a), in the principal stresses space (b), nesting cones (c), in the
triaxial plane (d).

rial even during small size cyclic tests, (ii) the associated energy dissipation
and (iii) the decrease in the material stiffness when the loop size is increased.
In other words, it is capable of simulating the previously defined ideal ‘plas-
tic adaptation’ reponse. The model so far presented essentially requires the
number N∗ of additional plastic mechanisms to be declared and the cali-
bration of two series of constitutive parameters: βn and wn. In Fig. 17a the
wn and βn values employed to obtain the numerical curves of Fig. 17b are
reported. The experimental curves plotted in Fig. 17b refer to a series of
cyclic torsional shear test results (Zambelli et al., 2007) performed on dense
Toyoura sand specimens at a constant confining pressure of 200 kPa. The
points plotted refer to different cycles obtained by progressively increasing
the size of each cycle.

During the unloading, the progressive activation of the different plastic
mechanisms allows of always obtaining a plastic adaptative response and
owing to the chosen plastic potential a perfect closed loop is always obtained
and ratcheting is missing. In the example described above, the different
yield loci are defined as open cones (Fig. 16c) of fixed opening angle.
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Figure 17. The model constitutive parameters calibration: (a) trends of
the two series of constitutive parameters for each nth plastic mechanism
(N∗ = 8), (b) comparison between cyclic torsional shear test results after
Zambelli et al. (2007) performed on dense Toyoura sand specimens and rel-
ative numerical simulations in term of the equivalent secant shear modulus
G versus the shear strain amplitude of the cycle γSA.

3.2 The Ratcheting Mechanism

As was stated in the introduction to this paragraph, the principal visco-
plastic mechanism provides the development of irreversible strains even if
the effective state of stress is not altered. The ratcheting mechanism, in
contrast, accounts for the development of irreversible strains associated with
the cyclic perturbation of the effective state of stress.
The experimental data already illustrated in a previous chapter have clearly
shown that

1. The irreversible strains accumulating during cyclic tests are mainly
governed by the plastic potential associated with the principal plastic
mechanism.

2. The intensity of the irreversible strains progressively accumulating (in
case of cycles of constant amplitude) is governed by the amplitude
of the cycle, by the medium stress level (η in the triaxial plane) at
which cycles are performed, and by the previous loading history. This
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can be schematically summarized by assuming that, for instance, when
standard triaxial compression tests are performed, εa = β̂ logN where
εa stands for the axial strain, Ncyc for the number of cycles, whereas

parameter β̂ linearly depends on both Δη (where η = q/p′) and ηm
the medium value of η in the cycle.

Within the framework of elasto-visco-plasticty, a constitutive modelling ap-
proach capable of numerically reproducing the previously listed main fea-
tures of the mechanical response of granular soils under cyclic loading can
be therefore the following:

ε̇rij =

(
N∗∑
n=1

Φ∗

n (fn)

)
Φ̂ (f)

∂g

∂σ′

ij

(31)

where Φ̂ (f) is an additional viscous nucleus characterized by an expression
similar to that suggested in (12) but by different constitutive parameters.
(31) is capable of accounting for all the items stressed above. Indeed:

• The presence of the plastic potential associated with the principal plas-
tic mechanism for defining the direction of the ratcheting strain rate
tensor derives from the assumption that small cycles work as pertur-
bations but the evolution of the material micro-structure is essentially
related once more only to its current configuration.

• The dependence on the amplitude of the cycle is provided by the term
in between parentheses. When the soil specimen is not perturbed
(that is when creep tests are performed), it becomes nil.

• The dependence on the current state of stress and on the loading
history is provided by term Φ̂ (f).

Finally, the coupling between the principal and the ratcheting plastic mech-
anisms allow us to simulate both the progressive reduction and the pro-
gressive increase in ε̇ (case b and c of Fig. 12). Coupling, in this case,
implies irreversible strains, here indicated with the symbol εrij , not to be
distinguished from those indicated with the symbol εvpij associated with the
principal plastic mechanism. Therefore, when cyclic tests of small amplitude
are performed and ratcheting irreversible strains develop, the yield function
f progressively evolves. If this evolution causes, for instance, an increase
in the size of f (i.e. hardening) case b of Fig. 12 is derived. Otherwise, if
a decrease in size results (typical of the mechanical response of cemented
soils suffering a cyclic fatigue), case c of Fig. 12 is instead obtained. Fig. 18
(di Prisco and Zambelli, 2009) testifies the capability of this type of ap-
proach in quantitatively reproducing the mechanical behaviour of granular
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Figure 18. Comparison between cyclic triaxial experimental test results on
Toyoura sand specimens after (Zambelli, 2006) and relative numerical sim-
ulations: a) vertical strain versus deviatoric stress, b) volumetric response,
c) vertical strain accumulation as a function of the number of cycles Ncyc.

soils experimentally obtained by performing on Toyoura sand specimens
cyclic drained compression triaxial tests. In particular, these data concern
a test consisting of three phases. During the first phase the specimen is
isotropically consolidate up to a cell pressure of 200 kPa; during the second
phase the vertical stress σa is increased to a value of 370 kPa whereas the
radial one σr is kept constant; finally, the specimen is cyclically loaded by
imposing a Δσa = 30 kPa (even in this case σr is kept constant).

3.3 A Numerical Simplified Application

In this paragraph, a simplified strategy, that can be considered as an ex-
tended version of the stress-path method, for evaluating settlements due to
environmentally induced cyclic loading characterized by an enormous num-
ber of cycles is briefly suggested. Under the main hypothesis that during
the evolution of time the local state of stress does not evolve (at any rate
this could be updated by artificially adding the irreversible strains induced
by cyclic loading histories), the method consists of four steps:

1. The subsoil domain is discretized and the local state of stress σ′0
ij

under permanent loads is evaluated by employing a standard FEM
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Figure 19. Local cyclic loading history induced by a heavy sea with a 4
meter high wave.

code, within which an elasto-plastic constitutive relationship is imple-
mented. The results reported hereafter concern an exercise recently
developed by the author (di Prisco et al., 2008) devoted to the evalu-
ation of settlements induced by heavy sea on a very particular break-
water structure.

2. The local cyclic amplitude Δσ′

ij is evaluated by using the same nu-
merical code and, at least, an elastic constitutive relationship. This
numerical step, to be solved, requires (i) the geometrical and strati-
graphic definition of the geotechnical problem, (ii) the description of
the synthetic loading history applied to the boundaries, (iii) the eval-
uation of both the previous and future local loading histories. In the
case of the particular breakwater taken into consideration, at a cer-
tain depth under the foundation of the structure the expected loading
history is illustrated, for instance, in Fig. 19. This local perturbation
is larger than that calculated at the same depth without the structure,
which, for the sake of brevity, is not here reported.

3. The constitutive model parameters are calibrated on standard lab-
oratory experimental test results. Once the model parameters are
calibrated, different load paths can be investigated and many obser-
vations can be retrieved from the analysis of the relative numerical
results. If for instance the hierarchical model previously cited is em-
ployed, the data plotted in Fig. 20 are obtained. In particular, in
Fig. 20 the influence for a normally consolidated silty loose sand both
of the type of the cyclic perturbation and of its amplitude are taken
into consideration. In Fig. 20a the cyclic stress paths accounted for are
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Figure 20. Heuristic use of the previously cited constitutive model: cyclic
stress path definition (a) and deviatoric strain versus number of cycles (b),
influence of the perturbation amplitude(c).

illustrated, whereas in Fig. 20b the accumulation of deviatoric strains
is plotted versus the number of cycles for the four different stress paths
of Fig. 20a. Finally, in Fig. 20c, for stress path 1 of Fig. 20a a com-
parison of the numerical simulations relative to different amplitudes
is reported.

4. The accumulation of irreversible strains is locally evaluated by im-
posing on the REV (the Representative Elementary Volume) the past
and future computed stress path (even undrained loading in case of
offshore structures has to be accounted for) and by employing the
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Figure 21. Exemplifying evolution with time of vertical deformation εv
relative to a given soil element: segment AB refers to the past, segment BC
to the future.

constitutive model previously calibrated. With reference to the exer-
cise here discussed, the perturbation is locally assumed to be applied
under undrained conditions and only extreme events are accounted
for. The applied local loading history is schematically given by the
succession of three phases: phase 1, during which 1074 cycles under
undrained conditions are applied, phase 2, during which dissipation
of excess pore pressure, at constant total stresses, is permitted, phase
3, during which a sort of creep under drained conditions take place.
The duration of this period is dominated by the return period of the
considered event. In the case here analysed this is equal to 333 years.
In 1000 years (representing the past of the stratum accounted for)
three extreme events are assumed to have occurred. The last step,
by contrast, is relative to the designed future for the structure, since
within the next 50 years only one extreme event is expected. In Fig. 21
the inclined lines among the pseudo-vertical steps are due to viscous
effects. The interpolating straight line describes the local effect of
extreme events in the past: as is evident, the straight line inclina-
tion severely depends on (i) the return period of the event, on (ii) its
intensity and (iii) duration.

5. The settlements are computed by integrating on the finite volume
representing the spatial domain of interest the irreversible strains cal-
culated at point 4.
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List of Symbols

el elastic component §2, §3
ep elasto-plastic component §2, §3
pl plastic component §2, §3
vp visco-plastic component §2, §3
Cep

ijhk elasto-plastic compliance tensor §2.1
D damping ratio §2.2
ė∗nij = ε̇nij −

1√
3
J∗n
1 χn

ij §3.1
f yield function §2, §3
fn yield function associated to the nth plastic mechanism §3.1
F load increment amplitude §2.2
g acceleration due to gravity §2.2
g plastic potential §2.1
gn plastic potential associated to the nth plastic mechanism §3.1
G equivalent secant shear modulus §3.1
h thickness of the saturated zone of the stratum §2.2
H hardening modulus §2.1
H̄ projection of the stratum thickness along the vertical di-

rection
§2.2

I impulse §2.2
I∗n1 =

√
3σ′

ijχ
n
ij §3.1

J∗n
1 =

√
3ε̇nijχ

n
ij §3.1

J∗n
2 = s∗nij s

∗n
ij §3.1

L landslide length §2.2
N force acting perpendicular to the slope §2.2
Ncyc number of cycles §3
N∗ number of plastic mechanisms §3.1
m soil mass of one unit wide/long soil deposit element §2.2
p′ effective mean stress §2.1
q distortional stress §2.1
s displacement §2.2
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s∗nij = σ′

ij −
1√
3
I∗n1 χn

ij §3.1
t time §2.1
T force acting parallely to the slope §2.2
Ts = W ′ sinα+ γwhL · sinα §2.2
u pore pressure §2.1
wn constitutive parameters §3.1
W = γd

(
H̄ − h

)
+ (γ′ + γw)hL §2.2

W ′ =
[
γd
(
H̄ − h

)
+ γ′h

]
L §2.2

WD area of the cycle §2.2
WS elastic stored energy §2.2
x coordinate §2.2
ẋ stratum displacement rate along the slope §2.2
ẍ stratum acceleration along the slope §2.2
zw water table level §2.2
α slope inclination §2.1
α̃ constitutive parameter §2.1
α∗ constitutive parameter §3.1
αij hardening parameter depending on irreversible strains §2.1
β inclination §2.2
β̂ parameter §3.2
β0 limit value for β when the maximum amplitude of cycles

tends towards zero
§2.2

βn constitutive parameter §3.1
γ shear strain §2.2
γ̇ shear strain rate §2.2
γ′ buoyant unit volume soil weight §2.2
γ̃ viscous constitutive parameter §2
γd dry unit volume soil weight §2.2
γSA shear strain amplitude of the cycle §3.1
γw water unit volume weight §2.2
Γ plastic multiplier §2.1
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Δs shear band thickness §2.2
εij strain tensor §2, §3
ε̇ij strain rate tensor §2, §3
ε̈ij strain acceleration tensor §2.1
ε̇nij = φ∗

n (fn)
∂gn
∂σ′

ij

§3.1

εa axial strain §2.1, §3.2
ε̇c strain rate describing the intermediate response §3
ε̇r strain rate due to repeated loading (racheting) §3
εv vertical deformation §2.1, §3.2
ε̇vol volumetric strain accumulation §2
εx, εy, εz principal strains §3
η = q/p′ §3.2
ηm medium value of η in the cycle §3.2
σa vertical stress §3.2
σc confining pressure §2.2
σ̇′

ij effective stress rate tensor §2, §3
σr radial stress §3.2
σ′

n effective normal stress §2.2
σ′

x, σ
′

y, σ
′

z effective principal stresses §3
τ shear stress §2.2
τf shear stress at the yield locus §2.2
φ′ material internal friction angle §2.2
φ∗

n viscous nucleus associated to the nth plastic mechanism §3.1
Φ viscous nucleus §2.1
Φ̂ additional viscous nucleus §3.2
χn
ij axis of the nth yield locus §3.1

ψi hardening parameter depending on time §2.1
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Politécnica de Madrid, Spain
† Instituto Geológico y Minero de España IGME, Madrid, Spain

1 Introduction

Depending on their dependence on time, loading can be classified as static
or transient. Two special cases of transient loading are (i) cyclic loading
and (ii) dynamic loading. While accelerations are basic in the latter, they
can be neglected in some problems in the former. It is also important to
notice that there exist dynamic problems which are not cyclic (propagation
of a fast landslide), and cyclic problems which are not dynamic (response of
a marine foundation to forces induced by tides). In the case of geomaterials,
and more specifically soils, there are cases where the problem is linear, such
as the small amplitude vibrations of foundations, while in others, such as
liquefaction of an earth dam during an earthquake, non linearity is a key
factor.

Cyclic and dynamic problems are found in roads, railways, seismic engi-
neering, coastal, harbour and ocean engineering, impact and impulsive wave
propagation, and avalanches and fast catastrophic landslides foundations,
just to mention a few.

Modelling of cyclic and dynamic problems in geomaterials is an area where
much work has still to be done, improving (i) the mathematical models de-
scribing coupling with pore fluids, (ii) constitutive models describing mate-
rial behaviour under cyclic loading, and (iii) numerical modelling, especially
when failure has taken place and material has fluidized.
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Concerning mathematical modelling, the dynamic response of geostructures
is usually described by a set of PDEs which are of hyperbolic nature. Funda-
mental solutions are called waves, and in 1D undamped dry soil the solution
consists on two waves which propagate in both directions without changing
their shape or their amplitude. This is perhaps the main property of hy-
perbolic problems.

This Chapter is devoted to present some important fundamental concepts
in solid dynamics, such as the two alternative formulations of the problem
(first and second order hyperbolic partial differential equations or PDEs).
Most of the existing models in solid dynamics are based on the second or-
der PDE, using as a main variable the displacements. A very interesting
alternative consists of using as variables the velocity and the stress fields.
The discrete models which arise from them present important advantages,
such as better propagation properties, and the possibility of using linear
elements such as triangles in 2D and tetrahedral in 3D.

This Chapter is organized as follows. After introducing the two main al-
ternative forms in which a problem can be cast in solid dynamics (first or
second order hyperbolic equations), we will devote a first part to describe
the former. Here we will introduce the Riemann invariants which can be
used to develop suitable transparent boundary conditions. Then, in a second
part, we will study the formulations based on the second order equations,
in the frequency and the time domain.

2 Solid Dynamics: Alternative Formulations

The purpose of this Section is to describe the two alternative formulations
which can be applied in Soil Dynamics in a simple manner, using the case
of a column of soil -or a one dimensional elastic bar-. The field equations are:

(i) The balance of momentum equation

∂σ

∂x
= ρ

∂2u

∂t2
= ρ

∂v

∂t
(1)

where v is the velocity, u the displacement, σ the stress and ρ the density.

(ii) The constitutive equation, which in the case of an elastic material is

σ = E
∂u

∂x
(2)
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where E is the modulus of elasticity. Both equations are usually combined
eliminating the stress, arriving to:

∂2u

∂t2
= c2

∂2u

∂x2
(3)

In above, c is the wave velocity given by:

c2 =
E

ρ
(4)

Alternatively, we can write the system of first order equations:

∂Φ

∂t
+A

∂Φ

∂x
= 0 (5)

where the vector Φ and the matrix A are given by:

Φ =

(
σ
v

)
A =

(
0 −E
−ρ 0

)
(6)

Sometimes, it is preferred the so-called conservation law

∂Φ

∂t
+

∂F

∂x
= 0 (7)

where F is the flux vector F = (−Ev,−σ/ρ)
T

3 First Order Hyperbolic Equations

3.1 1D Scalar Equation: Characteristics

The simplest equation with the structure of (6) and (7) is the 1D scalar
convective transport equation

∂φ

∂t
+ u

∂φ

∂x
= 0 x ∈ (0, L) t ∈ (0, T ) (8)

which represents the 1D convection of a magnitude φ by a current of con-
stant velocity u. The equation is obtained from the conservation of φ in a
control volume of length dx and normal section A as:

Adx
∂φ

∂t
= Auφ−Au

(
φ+

∂φ

∂x

)
where A and u have been assumed to be constants. Its conservative form is
written as:
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∂φ

∂t
+

∂F

∂x
= 0

where F = uφ. Above equation has to be complemented with suitable initial
and boundary conditions for the problem to be well posed. The 1D scalar
equation of convective transport is a particular case of the more general
problem

a
∂φ

∂t
+ b

∂φ

∂x
= c (9)

Depending on the coefficients a and b the equation can be classified as:

(i) Linear: a and b are functions of x, t

(ii) Quasi linear, if they depend also on the variable φ

(iii) Non linear, if they depend on partial derivatives of φ

To gain insight in the properties of this equation, we will consider the vari-
ation of φ (x, t) along a line Γ on the plane (x, t)

dφ =
∂φ

∂x
dx+

∂φ

∂t
dt (10)

Next, we will obtain the time derivative from the PDE as:

∂φ

∂t
=

1

a

(
c− b

∂φ

∂x

)
and we will substitute it into (10):

dt

a

(
c− b

∂φ

∂x

)
+ dx

∂φ

∂x
= dφ

from where we obtain

dφ =
c

a
dt+

∂φ

∂x

(
dx− b

a
dt

)
(11)

If we choose the curve Γ such that along it

dx− b

a
dt = 0 (12)

Eq. (11) simplifies to:

dφ =
c

a
dt (13)

The solution of the problem can be obtained in two steps
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(i) Find the characteristics Γ integrating (12)

(ii) Integrate (13) along the characteristics, for which we need the value of
φ at a point in each characteristic. In the case illustrated in Fig. 1, the
characteristics cut the x-axis and the t-axis on segments C1 and C2 To
solve the problem, we need to know φ on both C1 and C2, which are
respectively, the boundary and initial conditions. It is important to
note that boundary conditions are only to be applied at points from
where characteristics enter the domain.

The boundary condition reads φ (x = 0, t) = g(t) 0 ≤ t ≤ T and the initial
condition is φ (x, t = 0) = h(x) 0 ≤ x ≤ L.

 

t

x
C 2

C 1

Figure 1. Characteristics of the first order scalar hyperbolic equation.

In the case of the scalar 1D convective transport equation, the characteristics
are the straight lines x−ut = Ct and along them dφ = 0, i.e., the convected
magnitude φ is constant. The solution of the problem

∂φ

∂t
+ u

∂φ

∂x
= 0 x ∈ (0, L) t ∈ (0, T )

φ (x = 0, t) = g(t) 0 ≤ t ≤ T

φ (x, t = 0) = h(x) 0 ≤ x ≤ L

(14)

is:
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φ (x, t) = h (x0) = h (x− ut) if x− ut ≥ 0

φ (x, t) = g (t0) = g (x− ut) if x− ut ≤ 0
(15)

which has been obtained as illustrated in Fig. 2.

 

x

t

0 a a
x x u t= −

( ),
a a

x t

( ),
a a

x t

0
a

a

x
t t

u
= −

Figure 2. Characteristics and solution of the 1D advective transport prob-
lem.

In some cases, there exist source terms S in the PDE,

∂φ

∂t
+ u

∂φ

∂x
= S (16)

where we will assume that the source term is S = Gφ. In this case, the
characteristics are the same than in the purely convective term, but the
solution is obtained now by integrating:

dφ = Gφdt

and the solution is now:

φ (x, t) = h (x0) = h (x− ut) exp (Gt) if x− ut ≥ 0

φ (x, t) = g (t0) = g (x− ut) exp (Gt) if x− ut ≤ 0
(17)

3.2 Systems of 1st Order PDEs. Riemann Invariants

The structure of the systems of PDEs in 1D is very similar to that of the
scalar equation. Indeed, as we have already seen, the propagation of an
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elastic wave in a bar can be written as in (5)-(7).
We will assume that A has 2 eigenvalues {λ1, λ2} with the two right eigen-
vectors

{
x(1),x(2)

}
satisfying the condition Ax(k) = λkx

(k), k = 1, 2. We
will introduce the eigenvectors matrix P:

P =
{
x(1),x(2)

}
where the (i, j) term is Pij = x

(j)
i . The matrix A can be diagonalized as

P−1AP = Λ where Λii = λi

If we multiply by P−1 the PDE, we obtain

P−1 ∂Φ

∂t
+P−1A

∂Φ

∂x
= 0

and

P−1 ∂Φ

∂t
+
(
P−1AP

)
P−1 ∂Φ

∂x
= 0

P−1 ∂Φ

∂t
+ΛP−1 ∂Φ

∂x
= 0

(18)

We will introduce a new vector Ψ defined as

dΨ = P−1dΦ (19)

and we assume it to be differentiable, so:

∂Ψ

∂t
= P−1 ∂Φ

∂t

∂Ψ

∂x
= P−1 ∂Φ

∂x
(20)

From where, using (20) in (19) we arrive to:

∂Ψ

∂t
+Λ

∂Ψ

∂x
= 0 (21)

which is a system of uncoupled equations as Λ is diagonal:

∂ψ(i)

∂t
+ λi

∂ψ(i)

∂x
= 0 (22)

with solutions of the form

ψ(i) = F (i) (x− λit) (23)
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These results can be directly extrapolated to systems of n 1st order PDEs.
The uncoupled problem has, therefore, n characteristics which can be ob-
tained following the procedure described for the scalar case. The solution
consists, therefore, on n magnitudes ψi propagating along the n character-
istics. These magnitudes are often referred to as “Riemann invariants” of
the problem. As in the case of the scalar equation, we will need n initial
conditions and n boundary conditions to be applied where characteristics
enter the domain.

In the simple case we are considering, the two eigenvalues λk and eigenvec-
tors x(k) of matrix A can be obtained from:

Ax(k) = λkx
(k) k = 1, 2 (24)

as:

λ1 = +
√

E/ρ λ2 = −
√
E/ρ (25)

x(1) =
(
−
√
Eρ, 1

)T
x(2) =

(
+
√
Eρ, 1

)T
(26)

The matrix of eigenvectors P and its inverse are

P =

( −
√
Eρ 1

+
√
Eρ 1

)
P−1 =

1

2

⎛⎜⎜⎜⎝
− 1√

Eρ
1

+
1√
Eρ

1

⎞⎟⎟⎟⎠ (27)

and dΨ = P−1dΦ can be integrated to give

Φ = PΨ (28)

where

Ψ =
1

2
√
Eρ

( −σ + v
√
Eρ

σ + v
√
Eρ

)
(29)

Substituting (23) in (15), and taking into account that

P−1AP = Λ =

(
c 0
0 −c

)
(30)

we arrive to the new system
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∂ψ(1)

∂t
+ c

∂ψ(1)

∂x
= 0

∂ψ(2)

∂t
− c

∂ψ(2)

∂x
= 0

(31)

which is uncoupled. These equations describe the convective transport of
the two magnitudes ψ(1) and ψ(2) with velocities +c and −c which are the
Riemann invariants of the problem. Here, for convenience, we will multiply
them by 2

√
Eρ.

Riemann invariants can be applied to derive suitable boundary conditions
of the “incoming wave” and “transparent boundary” types. If we consider
a bar of length L extending from x = 0 to x = L, the transparent boundary
condition at x = L consists on making zero the Riemann invariant entering
the domain from the exterior, i.e.

ψ(2) = σ + v
√
Eρ
∣∣∣
x=L

= 0

or

ψ(2) = σ + ρcv|x=L = 0

(32)

while the incoming wave boundary condition is written as

ψ(2) = σ + v
√

Eρ
∣∣∣
x=L

= ψ
(2)
Inc (33)

where ψ
(2)
Inc characterizes the wave entering the domain from the left.

3.3 Generalization to Solid Dynamics Problems. Conservative
and Primitive Equations Formulation

Conservative Formulation Concerning two and three dimensional prob-
lems in isotropic elastic materials, the method described above can be gen-
eralized in a straightforward manner. The constitutive equation can be
written as:

σij = De
ijklεkl (34)

where the constitutive tensor is written in terms of Lamé’s constants λ and
μ as:

De
ijkl = λδijδkl + μ (δikδjl + δilδjk) (35)
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with

λ =
νE

(1 + ν) (1− 2ν)
μ =

νE

2 (1 + ν)

where ν is the Poisson ratio. Substituting (35) into (34) we get

σij = λεvδij + 2μεij

where εv is the volumetric strain: εv = tr(εij).

From here, we obtain

∂

∂t

⎛⎜⎜⎜⎜⎜⎜⎝
σ11

σ22

σ33

σ12

σ23

σ31

⎞⎟⎟⎟⎟⎟⎟⎠ =
∂

∂x1

⎛⎜⎜⎜⎜⎜⎜⎝
(λ+ 2μ) v1

λv1
λv1
μv2
0

μv3

⎞⎟⎟⎟⎟⎟⎟⎠+
∂

∂x2

⎛⎜⎜⎜⎜⎜⎜⎝
λv2

(λ+ 2μ) v2
λv2
μv1
μv3
0

⎞⎟⎟⎟⎟⎟⎟⎠+
∂

∂x3

⎛⎜⎜⎜⎜⎜⎜⎝
λv3
λv3

(λ+ 2μ) v3
0

μv2
μv1

⎞⎟⎟⎟⎟⎟⎟⎠
(36)

The balance of momentum is:

ρ
∂v

∂t
= divσ + b (37)

where b is the vector of body forces. Expanding this equation:

∂

∂t

⎛⎝ v1
v2
v3

⎞⎠ =
1

ρ

∂

∂x1

⎛⎝ σ11

σ12

σ13

⎞⎠+
1

ρ

∂

∂x2

⎛⎝ σ21

σ22

σ23

⎞⎠+
1

ρ

∂

∂x3

⎛⎝ σ31

σ32

σ33

⎞⎠+

⎛⎝ b1/ρ
b2/ρ
b3/ρ

⎞⎠
(38)

Equations (36) and (38) can be combined, resulting on:

∂Φ

∂t
+

∂Fk

∂xk
= S (39)

where

Φ = (σ11, σ22, σ33, σ12, σ23, σ31, v1, v2, v3)
T

(40)



www.manaraa.com

Math. Mod. for Trans. Dyn. and Cyc. Prob. in Geotech. Eng. 273

F1 = −
{
(λ+ 2μ) v1, λv1, λv1, μv2, 0, μv3,

σ11

ρ
,
σ21

ρ
,
σ31

ρ

}T

F2 = −
{
λv2, (λ+ 2μ) v2, λv2, μv1, μv3, 0,

σ21

ρ
,
σ22

ρ
,
σ23

ρ

}T

F3 = −
{
λv3, λv3, (λ+ 2μ) v3, 0, μv2, μv1,

σ31

ρ
,
σ32

ρ
,
σ33

ρ

}T

(41)

and

S =

(
0, 0, 0, 0, 0, 0,

b1
ρ
,
b2
ρ
,
b3
ρ

)T

(42)

k ranges from 1 to the dimensions of the problem, Φ is the vector of un-
knowns, Fk is the vector of fluxes along axis xk and S is the source terms
vector. This is referred to as the “conservative form” of the solid dynamics
problem.

So far, we have considered elastic materials. In the case of viscoplastic
materials, the constitutive equation is:

∂σ

∂t
= De (ε̇− ε̇vp) (43)

where the viscoplastic strain rate ε̇vp is given by a suitable constitutive law.
Above equation can be written as:

∂σ

∂t
−Deε̇ = Deε̇vp (44)

which shows that the fluxes are the same than those of the elastic case, but
the source term will include the contributions from Deε̇vp.

Finally, in the case of an elastoplastic problem, the structure of the equations
is of the type (39), but the fluxes will depend also on the components of the
elastoplastic tensor.

Primitive Variables Formulation The equation of an elastic wave prop-
agating along a direction characterized by unit vector n is written as

u = gf (n · x± ct) = gf (s± ct) (45)
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where c is the velocity of propagation , g is a polarization vector describing
the direction of vibration of particles and s the abscissa along the direction
of propagation. The negative sign corresponds to waves travelling in the
direction of n. Particle velocities are found differentiating with respect to
time:

v = ±gcf ′ (46)

The constitutive equation for a rate independent material can be written
as:

∂σij

∂t
−Dijkl

∂vk
∂xl

= 0 (47)

where, taking into account (46),

∂vk
∂xl

= gknlcf
′′ (48)

it results in:

∂σij

∂t
−Dijklgknlcf

′′ = 0 (49)

If we now multiply by nj

∂ (σijnj)

∂t
− (njDijklnl) gkcf

′′ = 0

introduce the acoustic tensor Q,

Qik = njDijklnl

and substitute

gkcf
′′ =

∂vk
∂s

we finally arrive to:

∂ (σijnj)

∂t
−Qik

∂vk
∂s

= 0 (50)

The balance of momentum equation expressed in terms of the velocity is:

∂vi
∂t

− 1

ρ

∂σil

∂xl
=

1

ρ
bi (51)

Taking into account that we are considering plane waves, and no variation
exists in directions perpendicular to n, above equation can be written as:
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∂vi
∂t

− 1

ρ

∂σij

∂s

∂s

∂xj
=

∂vi
∂t

− 1

ρ

∂σij

∂s
nj

from which we obtain

∂vi
∂t

− 1

ρ

∂

∂s
(σijnj) =

1

ρ
bi (52)

Equations (50) and (52) describe the propagation of a plane wave in an
unbounded continuum. They can be written in a more compact way as:

∂

∂t

(
ti
vi

)
+

(
0 −Qik

−δik/ρ 0

)
∂

∂s

(
tk
vk

)
=

(
0

bi/ρ

)
(53)

or

∂

∂t

(
t
v

)
+

(
0 −Q

−I/ρ 0

)
∂

∂s

(
t
v

)
=

(
0

b/ρ

)
(54)

where t is the traction per unit area in a plane normal to the direction of
propagation.

It has to be stressed that above equations can be applied to rate inde-
pendent materials which behaviour can be described by (47) and therefore
they are not restricted to linear elastic materials.

In the case of isotropic elastic materials, the acoustic tensor can be easily
found to be:

Q =

⎛⎝ λ+ 2μ 0 0
0 μ 0
0 0 μ

⎞⎠ (55)

and the wave propagation equations can be written as:

∂

∂t

⎛⎜⎜⎜⎜⎜⎜⎝
tx
ty
tz
vx
vy
vz

⎞⎟⎟⎟⎟⎟⎟⎠−

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 −M 0 0
0 0 0 0 −G 0
0 0 0 0 0 −G

−1/ρ 0 0 0 0 0
0 −1/ρ 0 0 0 0
0 0 −1/ρ 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
∂

∂s

⎛⎜⎜⎜⎜⎜⎜⎝
tx
ty
tz
vx
vy
vz

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0
0

bx/ρ
by/ρ
bz/ρ

⎞⎟⎟⎟⎟⎟⎟⎠
(56)

where M = λ + 2μ and G = μ. In above, the reference system has been
chosen so that the x axis coincides with the direction of propagation. If the
problem being analyzed is two-dimensional, the system can be written as:
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∂

∂t

⎛⎜⎜⎝
tx
tz
vx
vz

⎞⎟⎟⎠−

⎛⎜⎜⎝
0 0 −M 0
0 0 0 −G
−ρ 0 0 0
0 −ρ 0 0

⎞⎟⎟⎠ ∂

∂s

⎛⎜⎜⎝
tx
tz
vx
vz

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0

bx/ρ
bz/ρ

⎞⎟⎟⎠ (57)

Above equations can be rearranged in order to show the uncoupling of two
waves with speeds of propagation cP =

√
M/ρ and cS =

√
G/ρ correspond-

ing to the P wave and SV wave:

∂

∂t

(
tx
vx

)
+

(
0 −M

−1/ρ 0

)
∂

∂s

(
tx
vx

)
=

(
0

bx/ρ

)
∂

∂t

(
tz
vz

)
+

(
0 −M

−1/ρ 0

)
∂

∂s

(
tz
vz

)
=

(
0

bz/ρ

) (58)

If the material is of elasto-viscoplastic type, the results would be very sim-
ilar to those obtained for the elastic case, the left hand side of (56)-(58)
being identical, with the diference of an extra source term depending on the
viscoplastic strain rate.

Absorbing and Incoming Wave Boundary Conditions The absorb-
ing boundary conditions can be easily obtained when the solution consists on
plane waves approaching the boundary along its normal. In a general case,
a first order approximation can be obtain by assuming this condition. In the
case of elastic and viscoplastic materials, the solution can be described as
uncoupled waves of the form (58), for which the Riemann invariants can be
easily obtained following the method described in Section 3.2. Using a local
coordinate system with axes normal to the boundary and tangent to it, the
equations are projected onto this coordinate system, and the conditions to
be applied read:

ψ
(2)
P = tn + ρcP vn = 0

ψ
(2)
S = tt + ρcSvt = 0

(59)

where sub indexes n and t refer to the tangential and normal components,
t being the normal unit tractions on the surface.

In the case of a wave entering the domain, the boundary conditions are

ψ
(2)
P = tn + ρcP vn = ψ

(Inc)
P

ψ
(2)
S = tt + ρcSvt = ψ

(Inc)
S

(60)
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where ψ
(Inc)
P and ψ

(Inc)
S can be obtained from the information available for

the incoming wave and the definition of both invariants. A variant of these
boundary conditions consist on projecting the equations onto the direction
of the incoming wave, instead of onto the normal to the domain.
It is interesting to notice that the absorbing wave condition is a particular
case of the incident wave, obtained by making the Riemann invariant zero.

4 Second Order Equations

4.1 Second Order Equation: 2 and 3D Problems

The second order equation is the most widely used formulation. It consists
on:

(1) The balance of momentum equation

divσ + b = ρ
d2u

dt2
(61)

where b is the vector of body forces, σ the stress tensor, and u the
displacement field. In some cases, it is written in terms of velocities
as:

divσ + b = ρ
dv

dt
(62)

(2) A suitable constitutive relation relating stress and strain increments.
In the particular case of an elastoplastic material it is given by

dσ = Depdε (63)

For linear elastic materials, the constitutive equation is

dσ = Dedε (64)

and, for elasto viscoplastic materials,

dσ = De (dε− dεvp) (65)

(3) A kinematic relation between the strain and displacements

dεij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(66)
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In above we have assumed small strains, and no rotations have been taken
into account.

Above equations have to be complemented, for the problem to be well posed,
by boundary and initial conditions. Concerning the latter, both displace-
ments and velocities at time zero has to be given.

In the case of linear elastic materials, the constitutive tensor is

De
ijkl = λδijδkl + μ (δilδjk + δikδjl) (67)

from where we obtain the stress as:

σij = λδijuk,k + μ (ui,j + uj,i) (68)

After substitution in the balance of linear momentum equation (61) we
arrive to Navier equation

(λ+ μ)uj,ji + μui,jj + ρbi = ρ
∂2ui

∂t2
(69)

of which a particular case is the 1D bar

∂2u

∂t2
= c2

∂2u

∂x2

So far, we have used tensor notation, but it is worth considering an alter-
native vector notation which is frequently used in Finite Elements context.
The stress and strain are represented as

σ∗ =(σxx, σyy, σzz, σxy, σyz, σzx)
T

ε∗ =(εxx, εyy, εzz, γxy, γyz, γzx)
T

(70)

respectively. For the sake of simplicity we will drop the star superindexes
in what follows, understanding that whenever the vector form is used, we
refer to the star representation. Notice that in order to keep the work, we
have used the engineering shear strains γij which are defined as γij = 2εij .
A convenient way to relate strains to displacements is by means of an op-
erator matrix S defined as
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⎛⎜⎜⎜⎜⎜⎜⎝
εxx
εyy
εzz
γxy
γyz
γzx

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
∂x 0 0
0 ∂y 0
0 0 ∂z
∂y ∂x 0
0 ∂z ∂y
∂z 0 ∂x

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎝ ux

uy

uz

⎞⎠ = Su (71)

The divergence of the stress tensor can be written as:

divσ = σij,j =

⎛⎜⎝ ∂xσxx + ∂yσxy + ∂zσxz

∂xσxy + ∂yσyy + ∂zσyz

∂xσxz + ∂yσyz + ∂zσzz

⎞⎟⎠

σij,j =

⎛⎜⎝ ∂x 0 0 ∂y 0 ∂z

0 ∂y 0 ∂x ∂z 0

0 0 ∂z 0 ∂y ∂x

⎞⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

σxx

σyy

σzz

σxy

σyz

σzx

⎞⎟⎟⎟⎟⎟⎟⎠
divσ = STσ (72)

The balance of momentum is written in vector form as:

STσ + b = ρ
∂2u

∂t2
(73)

Finally, the constitutive equation is written in vector form as:

dσi = Dep
ij dεj (74)

In the case of linear elastic materials, the equations are:

STσ + b = ρ
∂2u

∂t2

σ = Deε

ε = Su

(75)

The equation can be written in terms of displacements by substituting the
stress and the strain:

(
STDeS

)
u+ b = ρ

∂2u

∂t2
(76)
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Above equations have to be complemented by suitable initial and boundary
conditions. We will assume that the problem is defined in a domain x ∈ Ω
with a boundary ∂Ω

(i) Initial conditions

u (x, t0) = u0 (x) v (x, t0) = v0 (x) (77)

(ii) Boundary conditions, which can be of several types

(ii.a) Prescribed displacements on x ∈ ∂uΩ : u (x, t)− ū (x, t) = 0

(ii.b) Prescribed tractions on x ∈ ∂tΩ : σn − t = 0, where n is the
outer normal to the boundary

(iii) Absorbing boundaries, where the boundary conditions are those de-
scribed in (59)-(60).

These conditions can be easily implemented in displacement or velocity
based finite elements.

4.2 1D Scalar Problems. Characteristics and Boundary Condi-
tions

To illustrate the concepts introduced in Section 4.1, we will consider here
the simple case of wave propagation in a 1D elastic bar. We recall the
governing equations, which are:

ρ
∂2u

∂t2
=

∂σ

∂x

σ = Eε

ε =
∂u

∂x

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∂2u

∂t2
= c2

∂2u

∂t2
(78)

where c =
√
E/ρ. The characteristic lines can be obtained as:

dx

dt
= ±c

and along them,

d

(
∂u

∂t

)
± cd

(
∂u

∂x

)
= 0

d

(
∂u

∂t
± c

∂u

∂x

)
= 0

From where, integrating along the two sets of characteristics, we arrive at:



www.manaraa.com

Math. Mod. for Trans. Dyn. and Cyc. Prob. in Geotech. Eng. 281

R(1) =
∂u

∂t
− c

∂u

∂x
R(2) =

∂u

∂t
+ c

∂u

∂x
(79)

where R(1) and R(2) are the Riemann invariants of waves travelling towards
the right and the left, respectively.

The problem requires initial conditions on displacements and velocities and
boundary conditions at both extremes of the bar to be well posed. They are
a particular 1D case of those given in previous section. The initial conditions
are:

u (x, t0) = u0 (x) v (x, t0) = v0 (x) 0 ≤ x ≤ L (80)

The boundary conditions are applied at both ends, x = 0 and x = L. They
can be (i) prescribed displacements (ii) prescribed stress, (iii) prescribed
incoming wave, and (iv) absorbing boundary type.

Concerning the latter, at the right end, the absorbing boundary condition
is:

R(2) =
∂u

∂t
+ c

∂u

∂x
= 0 (81)

while the incoming wave condition at x = L is

R(2) =
∂u

∂t
+ c

∂u

∂x
= R(Inc) (82)

In general, it can be seen that in both left and right extremes, above con-
ditions can be written as:

∂u

∂t
+ c

∂u

∂n
= 0 (83a)

∂u

∂t
+ c

∂u

∂n
=

(
∂u

∂t
+ c

∂u

∂n

)Inc

(83b)

It is interesting to notice that this equation is just another form of the one
found for first order equations (59)-(60). Indeed, from (82), taking into

account that v =
∂u

∂t
,
∂u

∂x
= ε and σ = Eε, we arrive to

R(2) = v + c
σ

E
= R(Inc)

which is equivalent to (59)-(60).
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As a first example we will consider the case of an infinite bar where a wave
is propagating to the right. We will assume that the travelling wave is
u (x, t) = u0 (x− ct). For computational reasons, the domain which will be
studied is x ∈ (0, L). The boundary conditions to be applied are:

(i) an incident wave condition at x = 0

(ii) an absorbent boundary condition at x = L

The incident wave is characterized by :(
∂u

∂t
+ c

∂u

∂n

)Inc

with

∂u

∂n
= −∂u

∂x

Therefore, we obtain(
∂u

∂t
− c

∂u

∂x

)Inc

= cu0u
′ + cu0u

′ = 2cu0u
′

The incident wave boundary condition results on

∂u

∂t
+ c

∂u

∂n
= 2cu0u

′

which is verified at x = 0.

The absorbent boundary condition is written at x = L as

∂u

∂t
+ c

∂u

∂x
= 0

which is fulfilled by the solution u (x, t) = u0 (x− ct).

4.3 2D Scalar Problems

In some 2D cases, such as membrane structures, the equation describing the
wave propagation can be written as

∂2u

∂t2
= div

(
c2gradu

)
(84)

where u is the displacement normal to the membrane, and c the wave prop-
agation. Other cases of interest are the propagation of Rayleigh waves in
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the surface of the soil (Das, 1983), and the surface waves in the sea (Mei,
1983).

Initial conditions consist on providing both the displacement u and the
velocity v at the initial time t0, and boundary conditions can be of the
four types described above, i.e., prescribed displacement, prescribed bound-
ary tractions (related to normal derivatives of the displacement), absorbing
boundary and incident wave boundary.

As above, a simple approximation consists of assuming a planar wave ap-
proaching the boundary, resulting on:

∂u

∂t
+ c

∂u

∂n
= 0 (absorbing boundary) (85)

and

∂u

∂t
+ c

∂u

∂n
= r(Inc) (86)

for the known incident wave condition. Alternatively, if we project onto the
incident wave direction, using the relation

∂u

∂n
=

∂u

∂ξ
cosβ

where ξ is the abscissa along the incoming wave direction, we obtain:

∂u

∂t
+ c

1

cosβ

∂u

∂n
= r(Inc) (87)

5 Coupled Problems in Soil Dynamics

One fundamental aspect of geomaterials is the coupling between soil skele-
ton and the pore fluids (water, air, oil,. . .). Much effort has been devoted
in the past to understand coupling between soil skeleton and pore water.
The first model was proposed by Biot (1941, 1955) for linear elastic ma-
terials. Further development was produced at Swansea University, where
Zienkiewicz and co-workers (Zienkiewicz et al., 1980, 1999; Zienkiewicz and
Shiomi, 1984) extended the theory to non linear materials and large defor-
mation problems. It is worth mentioning the contributions to this field of
Lewis and Schrefler (1998), Coussy (1995) and de Boer (2000). The pur-
pose of this Section is to present the Biot-Zienkiewicz equations and the
simplified forms which are used nowadays in the study of soil dynamics
problems.
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Figure 3. Incident wave conditions.

5.1 Biot-Zienkiewicz Equations

We will consider the case of a saturated soil consisting of a solid skeleton
and a fluid phase, water, which fills completely the voids. We will consider
a lagrangian formulation for the soil skeleton, and the movement of the fluid
phase will be described relative to it. Indeed, we will introduce the Darcy
velocity as

vw = v +w/n (88)

where vw is the absolute velocity of the pore water, v the velocity of the soil
skeleton, w the Darcy velocity and n the porosity. The total stress tensor σ
acting on the mixture can be decomposed into a hydrostatic pore pressure
term pwI and an effective stress tensor σ′ acting on soil skeleton as:

σ = σ
′ − pwI (89)

where I is the second order identity tensor.

The First Biot Zienkiewicz equation is the balance of momentum for the mixture,

div (σ′ − pwI) + ρb = ρ
dv

dt
+ ρwn

dw

dt
(90)

where ρ is the density of the mixture and b the vector of body forces.
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(i) soil skeleton

dθ1 = tr (dε) = dεv (91)

where tr denotes the trace operator and dεv is the increment of volu-
metric strain

(ii) deformation of soil grains caused by the pore pressure

dθ2 =
1− n

Ks
dpw (92)

where Ks is the volumetric stiffness of soil particles

(iii) deformation of pore water caused by pore pressure

dθ3 =
n

Kw
dpw (93)

where Kw is the volumetric stiffness of water.

From here, the balance of pore fluid mass is written as:

divw +

(
1− n

Ks
+

n

Kw

)
dpw
dt

+ tr

(
dε

dt

)
= 0 (94)

or

divw +
1

Q

dpw
dt

+ divv = 0 (95)

where we have introduced the mixed volumetric stiffness of water and solid
particles

1

Q
=

(
1− n

Ks
+

n

Kw

)
(96)

The balance of momentum of the pore fluid is:

−gradpw + ρwb− 1

kw
w = ρw

dv

dt
+ ρw

d

dt

(w
n

)
(97)

where ρw is the density of the pore water, and kw the permeability. We
will assume that Darcy law can be used to describe the interaction between
pore water and soil skeleton, although other alternatives can be chosen.
The mathematical model is completed with a suitable constitutive equation
and a kinematic relation between strain and displacement. The Biot-Zienkiewicz
equations are, therefore:
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(B1) the balance of momentum for the mixture

(B2) the balance of mass of the pore water

(B3) the balance of momentum of the pore fluid

(B4) the constitutive equation

(B5) the kinematic relation between strain and displacement.

These 5 equations involve 5 unknowns: displacements, Darcy velocity, ef-
fective stress, strain, and pore pressure. In practical applications the dis-
cretization is based on displacements, Darcy velocities, and pore pressures.
As an alternative, the relative displacement of the pore water relative to
the skeleton U can be used in the analysis instead of w.

5.2 The Displacement-Pore Pressure Swansea Model

The most widely used form of Biot-Zienkiewicz equations is the so called
“displacement- pore pressure” model, which is obtained in the cases where
fluid accelerations are small by eliminating the Darcy velocity between equa-
tions (B2) and (B3). The result is:

1

Q

dpw
dt

+ divv − div (kwgradpw) = 0 (98)

The equations are 4, involving 4 unknowns, and the analysis is based on
displacements and pore pressures, from where the name of the model comes.
The displacement-pore pressure Swansea model is usually formulated in
terms of displacements instead of velocities, which is the version presented
above. The main equations are:

div (σ′ − pwI) + ρb = ρ
d2u

dt2
(99)

1

Q

dpw
dt

+ div

(
du

dt

)
− div (kwgradpw) = 0 (100)

together with the constitutive and kinematics relations.
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List of Symbols

e elastic §3.3, §4.1
ep elastoplastic §4.1
Inc incoming §3, §4
n component normal to the boundary §3.3
t component tangent to the boundary §3.3
vp viscoplastic §3.3, §4.1
a coefficient §3.1
A

(
0 −E
−ρ 0

)
§2, §3.2

A normal section of control volume §3.1
b coefficient §3.1
b vector of body forces §2, §3.3, §4.1, §5
c wave velocity §2, §3, §4
c coefficient §3.1
cP =

√
M/ρ §3.3

cS =
√
G/ρ §3.3

D constitutive tensor §3.3, §4.1
E modulus of elasticity §2, §3, §4.2
F = uφ §3.1
F flux vector §2
Fk vector of fluxes along axis xk §3.3
g boundary condition §3.1
g polarization vector §3.3
G = μ §3.3
h initial condition §3.1
I identity tensor §3.3, §5
kw permeability §5
Ks volumetric stiffness of soil particles §5.1
Kw volumetric stiffness of water §5.1
L bar length §3, §4.2
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M = λ+ 2μ §3.3
n porosity §5.1
n unit vector §3.3
pw pore pressure §5
P eigenvectors matrix of A §3.2
Q mixed volumetric stiffness of water and solid particles §5
Q acoustic tensor §3.3
s abscissa along the direction of propagation §3.3
S source term §3.1
S source terms vector §3.3
S operator matrix §4.1
R(1) Riemann invariant of waves travelling towards the right §4.2
R(2) Riemann invariant of waves travelling towards the left §4.2
t time §2, §3, §4, §5
t traction per unit area in a plane normal to the direction

of propagation
§3.3

T time period §3
u displacement §2, §4
u velocity §3.1
u displacement vector §3.3, §4.1, §5
U displacement of the pore water relative to the skeleton §5.1
v velocity §2, §3.2
v velocity vector §3.3, §4.1
v velocity of soil skeleton §5
vw absolute velocity of pore water §5.1
w Darcy velocity §5.1
x horizontal coordinate §2, §3, §4
x vector of coordinates §3.3, §4.1, §5
x(i) i = 1, 2 right eigenvector of A §3.2
dx length of control volume §3.1
γij 2εij engineering shear strain §4.1
δij Kronecker’s delta §3.3, §4.1
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ε strain §4.2
ε strain tensor §3.3, §4.1
ε∗ strain tensor in vector form §4.1
ε̇ strain tensor rate §3.3
εv volumetric strain §3.3, §5.1
dθ1 volume change of soil skeleton §5.1
dθ2 volume change due to deformation of soil grains §5.1
dθ3 volume change due to deformation of pore water §5.1
λ Lamé’s constant §3.3, §4.1
λi i = 1, 2 eigenvalue of A §3.2
Λ P−1AP §3.2
μ Lamé’s constant §3.3, §4.1
ν Poisson’s coefficient §3.3
ξ abscissa along the incoming wave direction §4.3
ρ density §2, §3, §4
ρ density of the mixture §5
ρw density of the water §5.1
σ stress §2, §3.2, §4.2
σ stress tensor §3.3, §4.1, §5.1
σ′ effective stress tensor §5
σ∗ stress tensor in vector form §4.1
φ scalar variable §3.1
Φ vector of unknowns §2, §3
Ψ vector of Riemann invariants §3
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1 Introduction

In the Chapter devoted to mathematical modelling of transient, cyclic and
dynamic problems we have studied two alternative ways to describe these
problems, (i) as a system of first order, or (ii) as second order partial differ-
ential equations. We will devote this Chapter to Discretization techniques
which can be applied for the former.

The Chapter is structured as follows:

First of all, we will present a fundamental difficulty found in standard Boub-
nov Galerkin Finite Element methods, which do not work here. Then, we
will introduce the Finite Differences Method where we will consider their
stability, numerical diffusion and dispersion. In this way, we will gain insight
into the problem found in standard FEM. In particular, we will describe the
Lax Wendroff scheme, which is the basis of the Taylor Galerkin method in
FE described in last Section of the Chapter.

2 Model Equation: the 1D Convective Transport
Problem

We will recall some fundamental aspects of this problem which were pre-
sented in previous Chapter. Let us consider the transport of a magnitude
having a concentration φ by a steady, uniform current of velocity v (Fig. 1).
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νAφ νA φ +
∂ φ

∂ x

dx( )

Figure 1. Convection of a specie by an uniform current.

The equation of balance of mass for the specie being convected is

Adx
∂φ

∂t
= vAφ − vA

(
φ +

∂φ

∂x
dx

)
from where we obtain

∂φ

∂t
+ v

∂φ

∂x
= 0 (1)

This Partial Differential Equation has to be complemented by suitable initial
and boundary conditions:

φ (x, t = 0) = f0 (x) (2a)

φ (x = 0, t) = g (t) (2b)

It is important to notice that the boundary condition is only given at the
part of the domain where the current enters the domain, or, better, where
the information concerning the concentration enters the domain. This is an
important difference with parabolic or elliptic problems, where we should
have provided information in both sides of the channel.

The general solution of the problem is of the type:

φ (x, t) = φ (x − vt) (3)

which is a “wave” propagating to the right with the velocity of the current.
This can be easily checked by substituting in the PDE (1) and verifying it
is satisfied.
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3 Classical Galerkin Approximation: a Fundamental
Problem

The solution of (1) can be approximated using finite elements. We will de-
scribe the classical Galerkin method using a simple one dimensional prob-
lem, consisting on the convection by a fluid of constant velocity of a pollu-
tant which concentration is specified at the left boundary. We will assume
that the velocity v is equal to 1, the length of the domain is L = 5, and at
time zero the concentration within the domain is zero.

First of all, we will introduce the simple mesh consisting of 5 nodes and 4
elements which can be seen in Fig. 2 below.

e1 e2

n1 n2 n3

e3 e4

n4 n5

Figure 2. One dimensional finite element mesh for the convective transport
problem.

We will define the global shape functions Nj (x) j = 1, . . . , 5, and introduce

the nodal variables Φ̂j (t) j = 1, . . . , 5 which will be used to approximate
the solution as:

φ (x, t) ≈ φ̂ (x, t) =

5∑
j=1

Nj (x) Φ̂j (t) (4)

or, in a more compact manner:

φ̂ (x, t) = N · Φ̂ (5)

where we have introduced the vectors of shape functions N and of nodal un-
knowns Φ̂ which depends, respectively, on x and t. The boundary condition
of Dirichlet type (prescribed concentration) is

φ (x = 0, t) = g (t)

In this case, the concentration on the left boundary is constant:
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φ (x = 0, t) = 1

This boundary condition is immediately satisfied if we choose Φ̂1 (t) = 1,
i.e. we prescribe the value at node 1.

If we substitute the approximation in the PDE, it will not satisfy it. We
will define the error or residual RΩ as:

RΩ =
∂φ̂

∂t
+ v

∂φ̂

∂x
(6)

Next, we will substitute (4) in above:

RΩ =
∂

∂t

⎛⎝ 5∑
j=1

Nj (x) Φ̂j (t)

⎞⎠+ v
∂

∂x

⎛⎝ 5∑
j=1

Nj (x) Φ̂j (t)

⎞⎠
from where we obtain:

RΩ =
5∑

j=1

Nj (x)
dΦ̂j

dt
+

5∑
j=1

vΦ̂j
dNj

dx
(7)

The Galerkinmethod consists of obtaining the unknowns Φ̂j using the equa-
tions: ∫

Ω

NiRΩdΩ = 0 (8)

which provides us with the same number of equations than unknowns, tak-
ing into account that in node 1 the nodal value is known.

Eq. (8) can be interpreted as making the error orthogonal to the subspace
where we are building the approximation. When approximating functions,
the best approximation to a given function using a certain basis is such that
the residual or error is orthogonal to all vectors of the subspace.

If we further develop (8) using (7), we obtain:

∫
Ω

Ni

⎛⎝ 5∑
j=1

Nj (x)
dΦ̂j

dt

⎞⎠ dΩ = −
∫
Ω

Ni

⎛⎝ 5∑
j=1

vΦ̂j
dNj

dx

⎞⎠ dΩ

from where:
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(∫
Ω

NiNjdΩ

)
dΦ̂j

dt
= −v

(∫
Ω

Ni
dNj

dx
dΩ

)
Φ̂j (9)

where we have used the implicit summation convention of Einstein.

This equation can be written in matrix form as:

M
dΦ̂

dt
= −vHΦ̂ (10)

The mass matrix M and the discrete convective matrix H are obtained
by assembling the contributions of all elements in the mesh. All element
matrices are equal:

M(e) =
h

6

(
2 1
1 2

)
=

1

6

(
2 1
1 2

)

H(e) =
1

2

( −1 1
−1 1

) (11)

where h is the length of the elements, which is unity in this case. The
assembled matrices are:

M =
h

6

⎛⎜⎜⎜⎜⎝
2 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 1 2

⎞⎟⎟⎟⎟⎠
and

H =
1

2

⎛⎜⎜⎜⎜⎝
−1 1 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1
0 0 0 −1 1

⎞⎟⎟⎟⎟⎠ (12)

The Eq. (10) is a ODE which has to be integrated with respect to time.
We will introduce a time discretization, considering a series of time stations
t0, t1, . . . , tn with

tn = t0 + nΔt

The value of the vector of unknowns at time n will be denoted Φ̂n. We will
introduce a simple forwards approximation of the time derivative:
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dΦ̂n

dt
=

Φ̂n+1 − Φ̂n

Δt
(13)

which will be substituted in (10) to yield:

Φ̂n+1 = Φ̂n −ΔtvM−1HΦ̂n (14)

or

Φ̂n+1 =
(
I−ΔtvM−1H

)
Φ̂n

Φ̂n+1 = AΦ̂n

(15)

where I is the identity matrix of order 5 and A the iteration matrix. The
scheme is said to be explicit as the matrix of coefficients in (10) is the mass
matrix. Indeed, this problem can be solved using a Jacobi iteration scheme.
Usually, a reasonably accurate solution is obtained with 3-5 iterations.

We will start with an initial solution Φ̂0 = (1, 0, 0, 0, 0)
T
, and choose an

increment of time Δt = 0.

We will obtain:

Φ̂1 = AΦ̂0

Φ̂2 = AΦ̂1

Φ̂3 = AΦ̂2

. . .

Φ̂n+1 = AΦ̂n

(16)

The results present important oscillations which grow up with time which
can be seen in Figs. 3 and 4.

The former shows how the solution evolves with time at two control nodes,
while the latter gives the concentration in the domain at two different times.
The analytical solution is a step function, located at xs = nΔt. This type
of behaviour will be obtained no matter the increment of time used.

The reason is that the proposed scheme is unconditionally unstable, i.e., it
will not converge for any value of Δt.
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n

Φ
^

j
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2,00

1,50

1,00
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0,00

-0,50

0 2 4 8 10 126

Node 5
Node 3

Figure 3. Evolution of concentration at nodes 3 and 5 as a function of time
step.

Φ
^

j
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1,50

1,00

0,50

0,00

-0,50

0,5 1 32,521,5 43,5

n = 6
n = 12

n = 0

Figure 4. Concentration in the mesh at time steps 0, 6 and 12.
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A simple proof of why the error is growing can be obtained by considering
the scheme given in (15). As the exact solution will fulfil this equation, we
can write:

¯̂
Φn+1 = A

¯̂
Φn

where
¯̂
Φn is the exact value at time n. If we substract from this (15), we

find that the error at times n+ 1 and n are related by the same numerical
scheme we are using to obtain the solution:

ε
n+1 = Aε

n

It can be shown that the necessary and sufficient condition for the error not
to grow is that the moduli of all the eigenvalues have to be smaller than
unity. In the case we are considering here, there are complex eigenvalues
with their modulus larger than one.

Sometimes, in order to save computer time, the consistent mass matrix M
is approximated by a diagonal matrix with diagonal terms which are the
sum of all the coefficients in the same row. This diagonal matrix is referred
to as “lumped mass matrix” or ML.

In our case, ML is obtained immediately from M

M =
h

6

⎛⎜⎜⎜⎜⎝
2 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 1 2

⎞⎟⎟⎟⎟⎠
as:

ML =
h

6

⎛⎜⎜⎜⎜⎝
3 0 0 0 0
0 6 0 0 0
0 0 6 0 0
0 0 0 6 0
0 0 0 0 3

⎞⎟⎟⎟⎟⎠
The iteration matrix A has the eigenvalues: {1± 0.3536, 1.0(triple)} and
it is given by:
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The iteration equation for node 3 is:

Φ̂n+1
j = Φ̂n

j − vΔt

h

(
Φ̂n

j+1 − Φ̂n
j−1

2

)
with j = 2 (17)

In order to gain more insight of what the solution to this problem could be,
we will consider some basic finite difference schemes and try to export the
results to the finite element world.

4 Finite Difference Schemes

4.1 Finite Difference Grids. Notation

The Finite Difference Method is based on constructing a grid in the space-
time domain. If we consider a one dimensional domain of length L, 0 ≤ x ≤
L and a time interval 0 ≤ t ≤ T , a finite difference mesh could be the one
depicted in Fig. 5.
We have divided the space and the time axes in intervals of lengths Δx and
Δt respectively. The points at which vertical and horizontal lines coincide
are called “nodes” of the finite difference mesh. A particular node in the
grid at xj = jΔx tn = t0 + nΔt will be characterized by the pair of values
(j, n). The values of the unknown at this point will be denoted as

φ(xj , tn) = φn
j

4.2 Approximation of Derivatives: Difference Formulas

Partial derivatives with respect to time and space can be approximated as
combinations of the values of the unknown at the nodes. For instance, the

A =
(
I−ΔtvM−1

L H
)
=

=

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠− vΔt

h

⎛⎜⎜⎜⎜⎝
2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2

⎞⎟⎟⎟⎟⎠ .
1

2

⎛⎜⎜⎜⎜⎝
−1 1 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1
0 0 0 −1 1

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠− vΔt

2h

⎛⎜⎜⎜⎜⎝
−2 2 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1
0 0 0 −2 2

⎞⎟⎟⎟⎟⎠
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t

t
n

x
j

x

Figure 5. Finite difference mesh.

partial derivative with respect to time at (j, n) can be approximated as:

∂φ

∂t

∣∣∣∣n
j

=
φn+1
j − φn

j

Δt
+O (Δt) (18)

where we have used the notation O (Δt) to indicate the derivative is first
order accurate. This derivative is “forwards in time” or FT for short.

Concerning the first order space derivative, there are several alternatives.
We can approximate it as:

∂φ

∂x

∣∣∣∣n
j

=
φn
j − φn

j−1

Δx
+O (Δx) (19)

which is “backwards in space” or BS and first order accurate.

Alternatively, we can obtain higher accuracy if we approximate the special
derivative using a central difference formula:

∂φ

∂x

∣∣∣∣n
j

=
φn
j+1 − φn

j−1

2Δx
+O (Δx2

)
(20)

which is “centered in space” or CS for short, and second order accurate. It
would seem reasonable at first sight to assume that we could obtain a more
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accurate result using the CS approximation. We will compare next both
approximations.

4.3 Alternative FD Schemes: FTBS, FTCS and Lax Wendroff

A finite difference scheme is obtained by substituting the partial derivatives
with respect to time and space by their discrete approximations. If we use
a forwards in time and centred in space formulas, and substitute them in
our model PDE (1), we obtain:

φn+1
j − φn

j

Δt
+ v

φn
j+1 − φn

j−1

2Δx
= 0

from where we obtain the FTCS scheme:

φn+1
j = φn

j − vΔt

Δx

(
φn
j+1 − φn

j−1

2

)
(21)

It is very important to notice that this expression is exactly the same ex-
pression obtained for the classical Galerkin FE method presented in the
preceding Section.

The non dimensional number

C =
vΔt

Δx

represents the ratio between the physical velocity and a numerical velocity,
and it is referred to as Courant number. It plays a paramount role in
numerical analysis of first order hyperbolic PDEs. The FTCS scheme can
be written as:

φn+1
j = φn

j − C

2

(
φn
j+1 − φn

j−1

)
(22)

The FTBS scheme can be obtained in a similar way, resulting on:

φn+1
j = φn

j − C
(
φn
j − φn

j−1

)
(23)

Both schemes are said to be explicit, as the values at time tn+1 can be
obtained directly from the known values at time tn without having to solve
any system of equations.

Fig. 6 gives the “stencil” of both schemes, which describe the way in which
the information is obtained in both schemes.
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Figure 6. Stencil of FTCS and FTBS finite difference schemes.

We will use both schemes to solve the following problem:

Study the transport by a uniform current of constant velocity v of a pollu-
tant in a channel of length 2 units with a concentration at time zero which
is given by:

0 ≤ x < 0.8 φ(x, 0) = 0

0.8 ≤ x < 1 φ(x, 0) = (x− 0.8) /2

1 ≤ x < 1.2 φ(x, 0) = (1.2− x) /2

1.2 ≤ x < 1 φ(x, 0) = 0

The boundary condition is:

φ (x = 0, t) = 0

i.e., no pollutant enters the domain. We will use Δx = 0.1 and study the
cases C = {0.5, 1, 1.5}.

This problem can be easily programmed using a worksheet. The results are
given in Figs. 7 (a) to (c) and 8 (a) to (c).

The analytical solution of this problem consists on a translation of the tri-
angular wave profile with the current velocity. We can observe in Fig. 7
that we get the exact solution if Courant number is equal to one. In the
case C = 0.5, the profile is damped as if the problem we are solving would
be one including diffusion. This diffusion has been introduced by the algo-
rithm and is called “numerical diffusion”. We can observe that the choice of
C = 1.5 results on numerical oscillations which grow up as time increases:



www.manaraa.com

Discret. Tech. for Trans. Dyn. and Cyc. Prob.: I Order PDE 303

C = 1.0
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Figure 7. Convection of a triangular wave with FTBS scheme: (a) C = 0.5;
(b) C = 1; (c) C = 1.5.

the scheme is said to be unstable. It will be shown that stability is achieved
if the Courant number is smaller than one: the scheme is said to be “con-
ditionally stable”.

Next, we present in Fig. 8 the results obtained for the same case with the
FTCS algorithm. In principle, the accuracy should be higher, as we are
using a more accurate description of the space derivative, which in FTCS
is second order.

In spite of the higher accuracy of the space difference formula chosen, we
can see how the scheme is always unstable, with oscillations which grow
with time. The scheme is said to be “unconditionally unstable”.

Finally, we will present the Lax Wendroff scheme, which is obtained by (i)
performing a Taylor series expansion in time, followed by (ii) a discretization
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Figure 8. Convection of a triangular wave with FTCS scheme: (a) C = 0.5;
(b) C = 1; (c) C = 1.5.

in space. We will begin by writing the unknown at time tn+1 as:

φn+1 = φn + Δt
∂φ

∂t

∣∣∣∣n +
1

2
Δt2

∂2φ

∂t2

∣∣∣∣n (24)

Next, we use the PDE to obtain the partial derivatives with respect to time:

∂φ

∂t

∣∣∣∣n = −v
∂φ

∂x

∣∣∣∣n (25)

And, differentiating again with respect to time:
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∂2φ

∂t2

∣∣∣∣n =
∂

∂t

(
−v

∂φ

∂x

∣∣∣∣n) = −v
∂

∂x

(
∂φ

∂t

∣∣∣∣n)

= −v
∂

∂x

(
−v

∂φ

∂x

∣∣∣∣n)

= v2
∂2φ

∂x2

∣∣∣∣n
(26)

We will substitute now these expressions in the Taylor series expansion:

φn+1 = φn − v Δt
∂φ

∂x

∣∣∣∣n +
1

2
v2Δt2

∂2φ

∂x2

∣∣∣∣n (27)

And now, we are in position to approximate the space derivatives by differ-
ence formulas. As the Taylor expansion is second order accurate in time,
we will use second order accurate approximations for the space:

∂φ

∂x

∣∣∣∣n =
φn
j+1 − φn

j−1

Δx
+O (Δx2

)
∂2φ

∂x2

∣∣∣∣n =
φn
j+1 − 2φn

j + φn
j−1

Δx2
+O (Δx2

) (28)

After substituting in the PDE and rearranging, we obtain the Lax Wen-
droff scheme:

φn+1
j =

1

2
C (1 + C)φn

j−1 +
(
1− C2

)
φn
j − 1

2
C (1− C)φn

j+1 (29)

which is an centred in space explicit scheme with the same stencil than the
FTCS scheme discussed above.

If we solve the test example of the convection of a triangular wave by a
uniform current of constant velocity, we would obtain the results depicted
in Fig. 9.

We can see that the scheme is conditionally stable, the solution being exact
for C = 1.
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Figure 9. Convection of a triangular wave with Lax Wendroff scheme: (a)
C = 0.5; (b) C = 1; (c) C = 1.5.

The three schemes presented in this Section have been selected for several
reasons. First of all, we have introduced the concepts of stability and nu-
merical diffusion. We have seen that the centred in space FTCS scheme is
always unstable, while the FTBS and Lax Wendroff are conditionally sta-
ble. The second reason is that the FTCS algorithm coincides in 1D problems
with the classical Galerkin FEM scheme described in this Chapter when the
consistent mass matrix M is approximated by the lumped mass matrix ML,
as we have seen. Therefore, a centred, explicit Finite Element scheme based
on the classical Galerkin method will never work. Finite differences could
provide us with some hints for developing FE schemes which work. There
are two simple ways which can be derived from the FTBS and Lax Wen-
droff schemes: the upwind or Petrov Galerkinmethods, where the weighting
functions do not coincide with the shape functions, and the Taylor Galerkin
scheme which is an extension in the FE realm of Lax Wendroff scheme.



www.manaraa.com

Discret. Tech. for Trans. Dyn. and Cyc. Prob.: I Order PDE 307

4.4 Analysis of Stability: Von Neumann Method

We will assume that the FD scheme is linear, and can be cast in the form

L (Φ) = L
(
φn+1
j , φn

j−1, φ
n
j , . . .

)
= 0 (30)

The solution of the scheme Φ̄ will also satisfy the condition

L
(
Φ̄
)
= L

(
φ̄n+1
j , φ̄n

j−1, φ̄
n
j , . . .

)
= 0 (31)

If we now introduce the error εnj at x = x0 + jΔx and t = t0 + nΔt

εnj = φn+1
j − φ̄n+1

j (32)

we can easily see that

L
(
Φ− Φ̄

)
= 0

L (ε) = 0
(33)

and therefore, the error satisfies the finite difference equation. We will
assume that the error at time tn can be written as

εnj =

N∑
l=−N

En
l exp (IkljΔx) I =

√−1 (34)

Because of the linearity of the scheme, we can analyze the behaviour of
a particular component En exp (IkjΔx). It is interesting to note that the
wave lengths which can be represented by the grid have a maximum value
λmax = 2L = 2NΔx, and a minimum value λmin = 2Δx where N = LΔx
is the number of divisions along x. Therefore, a particular wave length can
be written as

λl = 2lΔx l = 1 . . .N (35)

Concerning wave numbers, they can be obtained as

kl =
π

lΔx
l = 1 . . .N (36)

with

kmin =
2π

λmax
=

π

NΔx
kmax =

2π

λmin
=

π

Δx
(37)

An important magnitude is the phase lag between two consecutive grid
points, which is:
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ϕ = kΔx (38)

Taking into account (36) we obtain

ϕ =
π

l
l = 1 . . .N

The error can be written in terms of ϕ as

En exp (lkjΔx) = En exp(Ijϕ) (39)

It is also useful to introduce the relative wave length

Λ =
λ

Δx
= 2l =

2π

ϕ
(40)

which relates a particular wavelength to the grid spacing. It can vary be-
tween Λmin = 2 and Λmax = 2 as Λl = 2l. Taking all above definitions into
account, we can write the error in some representative points of the finite
difference grid as:

εn+1
j = En+1 exp(Ijϕ)

εnj+1 = En exp(I (j + 1)ϕ)

εnj = En exp(Ijϕ)

εnj−1 = En exp(I (j − 1)ϕ)

(41)

We will analyze next the stability of the FD schemes FTCS, FTBS and Lax
Wendroff.

In the case of the FTCS scheme (22), we know that the error satisfies the
FD equation:

εn+1
j = εnj − C

2

(
εnj+1 − εnj−1

)
(42)

We will substitute next (41) into (42), which results on:

En+1 exp (Ijϕ) = En exp (Ijϕ)−C

2
{En exp (I (j + 1)ϕ)− En exp (I (j − 1)ϕ)}

(43)
From here, we divide by En exp (Ijϕ):
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En+1 = En − C

2
En (exp (Iϕ)− exp (−Iϕ))

We will introduce a measure of the error amplification

ξn =
En+1

En
= 1− C

(
exp (Iϕ)− exp (−Iϕ)

2

)
= 1− I C sinϕ (44)

The condition which must be fulfilled by the FD scheme for being stable is:

|ξn| ≤ 1 (45)

In the case of the FTCS scheme, we have

|ξn| = (1 + C2 sin2 ϕ
)

which is larger than 1 for all values of C. Therefore, the scheme is said to
be unconditionally unstable. The importance of this result lies in the
fact that centred FDs are equivalent to classical FEM approximations.

In the case of the scheme FTBS we obtain:

ξn =
En+1

En
= {1− C + C cosϕ} − I sinϕ (46)

The stability condition is satisfied for Courant numbers C ≤ 1. The scheme
is said to be conditionally stable. This is why we have obtained in Fig. 7
(c) oscillations which destroy the accuracy of the computed solution, as
C = 1.5. However, in the cases C = 0.5 and C = 1 the solution was stable.

The stability condition in this case can be obtained by means of geometrical
considerations, as illustrated in Fig. 10.

In the case of the Lax-Wendroff scheme, we obtain

ξn =
En+1

En
=
{
1− C2 + C2 cosϕ

} − IC sinϕ (47)

and the stability condition is C ≤ 1. The Lax-Wendroff scheme is, therefore
conditionally stable. As in the previous case, this explain the results
obtained in Fig. 9.
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Figure 10. Stability of FTBS method.

4.5 Numerical Diffusion and Dispersion

If we look again at the examples presented in Figs. 7 and 9, where a wave of
triangular shape was convected by a uniform current, we can observe that
when the Courant number is 1, the numerical predictions coincide with the
analytical solution, in which the shape of the wave does not change. How-
ever, at C = 0.5, we observe a diffusion which does not exist in the model.
This spurious effect is referred to as “numerical diffusion” or “numerical
damping” and causes a deterioration of the quality of the numerical pre-
dictions. The reason is that the numerical scheme introduces a diffusion
which depends on the relative wave length and the Courant number for a
considered scheme. In addition to this, waves of different lengths propagate
with different velocities in a given mesh, instead of having a velocity given
by the convective velocity u.

We will consider the case of the scalar convective transport 1D (1) and we
will represent a fundamental solution as
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φ̄ = A exp {Ik (x− vt)} (48)

which can be easily verified to satisfy (1). The ratio between the analytical
solutions at two consecutive grid point j and j + 1 at a certain time n is:

φ̄n
j+1

φ̄n
j

= exp (−IkvΔx) = exp (−Iϕ) (49)

where we have used the definition (38) ϕ = kΔx.

The ratio between the analytical solutions at two consecutive times n and
n+ 1 at a certain point j is:

φ̄n+1
j

φ̄n
j

= exp (−IkvΔt) = exp (−ICϕ) (50)

where we have used the equalities vΔt = CΔx which results from the defi-
nition of Courant number and ϕ = kΔx.

Therefore, if we compare the solutions at times tn and tn+1, we can see that
the amplitudes are the same, and the phase difference is −ICϕ.

Concerning the computed solution, the ratio
φn+1
j

φn
j

can be obtained following

the procedure described in previous Section. Indeed, as both the error and
the computed solution verify the FD equation, we have

ξ =
φn+1
j

φn
j

=
εn+1
j

εnj
(51)

This value has been obtained when studying the stability of FTBS and Lax
Wendroff methods:

ξ|FTBS =
En+1

En
= {1− C + C cosϕ} − I sinϕ

ξ|LW = ξn =
En+1

En
=
{
1− C2 + C2 cosϕ

}− IC sinϕ

(52)

The damping D is obtained as the modulus of ξ. It is interesting to notice
that D depends on the Courant number and ϕ, or the relative wave number

Λ =
λ

Δx
=

2π

ϕ
. Therefore, for a given initial condition, the components



www.manaraa.com

312 M. Pastor

with different relative wave lengths present different damping. We illustrate
this fact in Figs. 11 and 12, where we have represented for FTBS and Lax
Wendroff schemes the damping at different Courant numbers as a function
of the relative wavelength.

Numerical Damping FTBS
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Figure 11. Diffusion and damping properties of FTBS scheme.

 
Numerical Damping Lax Wendroff

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25

relative wave length

D

C = 0.25

0.5

0.9

Figure 12. Diffusion and damping properties of Lax Wendroff scheme.

From above figures, we can conclude that the FTBS scheme is more dissi-
pative than Lax Wendroff, specially for low numbers of the relative wave
length. Moreover, in the former, the Λ = 2Δx component disappears for
C = 0.5, as D = 0. Highly dissipative schemes have to be avoided when
modelling the propagation of waves over very long distances.
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Concerning the numerical dispersion, the analysis consists of comparing the
analytical phase difference exp (−ICϕ) with that of the numerical scheme,
which is given by:

θ = tan−1 Im (ξ)

Re (ξ)
(53)

The dispersion error is quantified usually by the quotient

θ

θ̄
=

tan−1 Im (ξ)

Re (ξ)

−Cϕ
(54)

We provide in Figs. 13 and 14 the dispersion error of FTBS and Lax Wen-
droff schemes. It is worth observing that the FTBS scheme at C = 0.5 has
no dispersion error, i.e., the analytical and numerical phases coincide for all
possible wave lengths. At C = 0.9, the computed short wavelengths travel
faster than they should, which correspond to errors larger than unity. In all
three cases considered the dispersion ratio is zero at relative wave lengths of
2, which means this wavelength has zero velocity. Due to the high damping,
they disappear from the solution.

Numerical Dispersion FTBS
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Figure 13. Numerical dispersion properties of FTBS scheme.

In the Lax Wendroff scheme, we observe in all cases a dispersion factor
smaller than unity, smaller for the smaller wave lengths, which means that
small wave lengths will be propagating slower. As the damping is not high,
they appear as oscillations behind shocks. This is illustrated in Fig. 15,
where we have depicted a discontinuity which propagates to the right.
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Numerical Dispersion Lax Wendroff

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20

relative wave length

D
is

pe
rs

io
n 

er
ro

r

C = 0.25

0.5

0.9

Figure 14. Numerical dispersion properties of Lax Wendroff scheme.
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5 Finite Elements That Work: the Taylor Galerkin
Scheme

The Taylor Galerkin algorithm is obtained following the same procedure
than in the Lax Wendroff scheme, the only difference being that the space
discretization is performed using the Galerkin method.

The Taylor Galerkinmethod was introduced independently by Donea (1984)
and Löhner et al. (1984), and applied to fluid dynamics problems by Peraire
(1986), Peraire et al. (1986), Donea et al. (1987) and Quecedo and Pastor
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(2002). The interested reader can find a detailed description in the text by
Zienkiewicz and Taylor (2000).

This Section is devoted to present this simple yet accurate algorithm, start-
ing from the very simple case of the convective transport equation in 1D,
following with its implementation for quasi-linear equations and systems,
where we will introduce the two-step variant of the Taylor Galerkin method.
Finally, we will analyze the discretization of source and diffusive terms.

5.1 The Taylor Galerkin Algorithm for the 1D Convective Trans-
port Equation

We will start with the 1D convective transport equation (1) and the Taylor
series expansion (55)

φn+1 = φn − v Δt
∂φ

∂x

∣∣∣∣n +
1

2
v2Δt2

∂2φ

∂x2

∣∣∣∣n (55)

Next, we will introduce the finite element approximation:

φ (x, t) ≈ φ̂ (x, t) =

5∑
j=1

Nj (x) Φ̂j (t) (56)

or,

φ̂ (x, t) = N · Φ̂
where we have introduced the global shape functions Nj (x) j = 1, . . . , 5,

and nodal variables Φ̂j (t) j = 1, . . . , 5.

If we substitute the approximation (56) in (55), multiply both sides by
Ni (x) and integrate in our domain, we obtain:

∫
Ω

Niφ̂
n+1dΩ =

∫
Ω

Niφ̂
ndΩ− vΔt

∫
Ω

Ni
∂φ̂

∂x

∣∣∣∣∣
n

dΩ + v2
Δt2

2

∫
Ω

Ni
∂2φ̂

∂x2

∣∣∣∣∣
n

dΩ

(57)
We will study each term separately:∫

Ω

Niφ̂
n+1dΩ =

(∫
Ω

NiNjdΩ

)
Φ̂n+1

j = MijΦ̂
n+1
j

∫
Ω

Niφ̂
ndΩ =

(∫
Ω

NiNjdΩ

)
Φ̂n

j = MijΦ̂
n
j
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where M is the mass matrix.∫
Ω

Ni
∂φ̂

∂x

∣∣∣∣∣
n

dΩ =

(∫
Ω

Ni
∂Nj

∂x
dΩ

)
Φ̂n

j = HijΦ̂
n
j

where we have introduced the discrete convective operator matrix H as:

Hij =

∫
Ω

Ni
∂Nj

∂x
dΩ

Finally, the term involving second derivatives of φ̂ cannot be obtained as the
approximation is continuous of class C0, with discontinuous first derivatives
and second derivatives not defined at nodes between elements. We will
integrate by parts this term to get:∫

Ω

Ni
∂2φ̂

∂x2

∣∣∣∣∣
n

dΩ = −
∫
Ω

∂Ni

∂x

∂φ̂

∂x

∣∣∣∣∣
n

dΩ+

∫
∂Ω

Ni
∂φ̂

∂n

∣∣∣∣∣
n

dΓ

where ∂Ω is the boundary of the domain (in 1D problems the two points
limiting the interval) and n the unit normal to the boundary.

This expression can be further elaborated, arriving to:

−
(∫

Ω

∂Ni

∂x

∂Nj

∂x
dΩ

)
Φ̂n

j +

∫
∂Ω

Ni
∂φ̂

∂n

∣∣∣∣∣
n

dΓ

= −KijΦ̂
n
j +

∫
∂Ω

Ni
∂φ̂

∂n

∣∣∣∣∣
n

dΓ

(58)

where K is a matrix which is usually referred to as “stiffness matrix” in
structural analysis. Therefore, after collecting all the terms we obtain:

MΦ̂n+1 = MΦ̂n − vΔtHΦ̂n − v2
Δt2

2
KΦ̂n + fn

where fn is the vector arising from the integral along the boundary.

This equation can be cast as:

MΔΦ̂n+1 = rhs|n (59)

where rhs means the right hand side vector and the vector of unknowns is:

ΔΦ̂n = Φ̂n+1 − Φ̂n
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The algorithm is explicit, as the coefficient matrix is the mass matrix, and
it can be solved using an iterative scheme of Jacobi type:

ΔΦ̂n
∣∣∣(k+1)

= M−1
L

(
rhs|n −M ΔΦ̂n

∣∣∣(k)) (60)

which usually converges within 3 to 5 iterations.

5.2 Quasi Linear Equations and Systems. Conservation Forms

First order hyperbolic equations can be cast in an alternative form called
conservative or conservation form. In the case of the convective transport
equation, we introduce the flux F as:

F (x, t) = vφ (x, t)

and the equation can be written as:

∂φ

∂t
+

∂F

∂x
= 0 (61)

Another example is the Burger’s equation, which is the simplest equation in-
corporating a convective term similar to those found in the eulerian balance
of momentum equations of fluid dynamics:

∂φ

∂t
+ φ

∂φ

∂x
= 0 (62)

where we can define the flux as:

F =
1

2
φ2 (63)

This equation is an example of quasi linear hyperbolic PDEs.

To derive the Taylor Galerkin algorithm for a quasi linear equation written
in conservation form, we use the Taylor series expansion:

φn+1 = φn + Δt
∂φ

∂t

∣∣∣∣n +
1

2
Δt2

∂2φ

∂t2

∣∣∣∣n (64)

From here, and using the PDE written in conservation form we obtain:

∂φ

∂t
= −∂F

∂x

and
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∂2φ

∂t2
=

∂

∂t

(
−∂F

∂x

)
= − ∂

∂x

(
∂F

∂t

)
We will write the time derivative of the flux as:

∂F

∂t
=

∂F

∂φ

∂φ

∂t
= −A

∂F

∂x
(65)

where

A =
∂F

∂φ

From here, we obtain:

φn+1 = φn − Δt
∂F

∂x

∣∣∣∣n +
1

2
Δt2

∂

∂x

(
A
∂F

∂x

)∣∣∣∣n (66)

which is the one step Taylor Galerkin algorithm for quasi linear equations.

In the case of a one dimensional system of 1st order PDEs, the unknowns
and fluxes would be vectors of a certain dimension. The system could be
written in a compact manner as:

∂φ

∂t
+

∂F

∂x
= 0 (67)

and the Taylor Galerkin algorithm would be (65), the only difference being
now that A is a matrix.

Space Discretization of (65) is performed through the method of Galerkin.
First, we substitute the finite element approximation of the unknowns in
(65), and then the equation is multiplied by the shape functions and inte-
grated in the domain:

∫
Ω

Niφ̂
n+1dΩ =

∫
Ω

Niφ̂
ndΩ−Δt

∫
Ω

Ni
∂̂F

∂x

∣∣∣∣∣
n

dΩ+
1

2
Δt2

∫
Ω

Ni
∂

∂x

(
̂

A
∂F

∂x

)∣∣∣∣∣
n

dΩ

(68)
The third term is obtained easily if we are using linear elements. The flux
is obtained at nodes and interpolated using the shape functions as:

F = NjF̂j
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The partial derivative is constant within elements. The contribution of a
particular element (e) to the integral is then obtained as:∫

Ωe

Ni
∂̂F

∂x

∣∣∣∣∣
n

dΩe =
∂F

∂x

∣∣∣∣n ∫
Ωe

NidΩ (69)

where the overbar refers to the constant value at the element. In the case
of 1D linear elements considered here, the integral of a shape function over
an element is: ∫

Ω

NidΩ =
1

2
le

where le is the length of the element.

Concerning the term involving second order derivatives, it is integrated by
parts (in 2 and 3D problems we will use the Gauss theorem):

∫
Ω

Ni
∂

∂x

(
̂

A
∂F

∂x

)∣∣∣∣∣
n

dΩ = −
∫
Ω

∂Ni

∂x

̂

A
∂F

∂x

∣∣∣∣∣
n

dΩ+

∫
∂Ω

Ni

̂

A
∂F

∂n

∣∣∣∣∣
n

dΓ (70)

The integral in the domain is easily obtained, as both partial derivatives are
constant within each element. Depending on the nature of A the integral
could be directly computed or we will have to use numerical integration
techniques. In the case of Burgers equation, A = φ, and the integral is
obtained as the product of the element length by the partial derivatives
(constant) in the element by the average of φ in the element.

5.3 The Two Step Taylor Galerkin Algorithm

In the preceding Section we have presented a one step Taylor Galerkin algo-
rithm for systems of quasi linear first order PDEs. The algorithm involves
products of a jacobian matrix A by a vector, which introduces an important
computational load.

The two step Taylor Galerkin method is an improvement which circumvents
this problem. It was introduced by Löhner et al. (1984). It consists on two
steps:

In the first step, the solution is advanced in time Δt/2:

φn+ 1

2 = φn − Δt

2

∂F

∂x

∣∣∣∣n (71)
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It is important to notice that the flux derivative is obtained at elements
and not at nodes. Therefore, this expression is reformulated using element
averaged values as:

φ̄n+ 1

2 = φ̄n − Δt

2

∂F

∂x

∣∣∣∣n (72)

Once the values of the unknowns at the elements are known, we can obtain
the fluxes F̄n+ 1

2 at time n+ 1
2 as they are functions of the unknowns.

In the second step, we obtain the values of the unknowns at time n + 1
as:

φn+1 = φn −Δt
∂F

∂x

∣∣∣∣n+ 1

2

(73)

We will use Galerkin method to obtain:

∫
Ω

Niφ̂
n+1dΩ =

∫
Ω

Niφ̂
ndΩ−Δt

∫
Ω

Ni
∂F

∂x

∣∣∣∣n+ 1

2

dΩ (74)

The first two terms are: ∫
Ω

Niφ̂
ndΩ = MijΦ̂

n
j∫

Ω

Niφ̂
n+1dΩ = MijΦ̂

n+1
j

The last term is obtained using integration by parts or Gauss theorem, as
the fluxes at time n+ 1

2 are known at element level and not at nodes:

∫
Ω

Ni
∂F

∂x

∣∣∣∣n+ 1

2

dΩ = −
∫
Ω

∂Ni

∂x
F̄
∣∣n+ 1

2 dΩ+

∫
Ω

Ni
∂F̄

∂n

∣∣∣∣n+
1

2

dΩ (75)

The second step can be written as:

MΔΦ̂n = rhs|n+ 1

2

which can be solved with an iterative solver such as Jacobi or Preconditioned
Conjugate Gradient.
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5.4 Diffusive and Source Terms

The two step algorithm can be extended easily to the general case involving
diffusive and source terms. Let us consider the equation:

∂φ

∂t
+

∂F

∂x
= S +D (76)

where S is the source and D the diffusive term:

D =
∂

∂x

(
k
∂φ

∂x

)
(77)

The first step is:

φn+ 1

2 = φn +
Δt

2

(
S − ∂F

∂x

∣∣∣∣n) (78)

where we have not included the diffusive terms.

The second step is:

φn+1 = φn +Δt

(
S +D +

∂F

∂x

∣∣∣∣n+ 1

2

)
(79)

We find here two additional terms, source and diffusive, to be discretized.
Concerning the former, its contribution is:∫

Ω

NiS̄
n+ 1

2 dΩ (80)

This term can be approximated using the value of the source term at the
element.

The diffusive term is approximated by its value at time tn:∫
Ω

Ni
∂

∂x

(
k
∂φ

∂x

)n

dΩ

We will integrate it by parts, obtaining:

−
∫
Ω

∂Ni

∂x
k
∂φ̂

∂x
dΩ+

∫
Ω

Nik
∂φ̂

∂n
dΩ

which can be written as:

−KijΦ̂
n
j + fDi (81)
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The algorithm described above performs well provided that the intensity
of the source term is not very high. Otherwise, we will have to introduce
special splitting algorithms to deal with this term. This situation happens
quite frequently in the analysis of fast catastrophic landslides, where source
terms are due to the slope of the terrain and the basal friction.

5.5 A 4th Order Runge Kutta SplittingMethod for Strong Sources

We will describe here a technique which has been used by the authors (Que-
cedo et al., 2004; Mabssout et al., 2006) to deal with source terms within
the framework of the two steps Taylor Galerkin algorithm. The original
idea is described by Hirsch (1988).

The system of hyperbolic equations will be discretized using a splitting
operator technique in which each of the two operators, convective transport
and sources, will be treated separately. Therefore, we will consider two
problems:

(i) A pure convection problem of the type

∂φ

∂t
+ v

∂φ

∂x
= 0

φ (x, tn) = φn (x)

⎫⎪⎬⎪⎭⇒ φadv (82)

(ii) The source problem, which is a ordinary differential equation:

dφ

dt
= S(φ, t)

φ (x, tn) = φadv

(83)

Above decomposition can be written in a compact manner as:

φn+1 = S (Δt)Adv (Δt)φn (84)

where S and Adv are the differential operators for the source and convective
transport parts.

The second part of the splitting concerns the source term. The solution
which we will obtain is:

φn+1
i = φadv

i +ΔtS(φs
i ) (85)

Runge-Kutta algorithms provide a high accuracy in the evaluation of ODEs.
A detailed description is provided by Hirsch (1988). The general form of a
RK algorithm is
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φ1 = φn

φ2 = φn +Δtα2H(φ1)

φ3 = φn +Δtα3H(φ2)

. . . . . .

φk = φn +ΔtαkH(φk−1)

φn+1 = φn +Δt

k∑
k=1

βkH(φk)

(86)

where H is the time derivative of the unknown, in our case S, and the con-

sistency condition

k∑
k=1

βk = 1 has to be fulfilled.

Here we have chosen a 4th order RK algorithm, as it provides an excellent
combination of accuracy and computational effort. The coefficients are given
by:

α2 =
1

2
; α3 =

1

2
; α4 = 1;

β1 =
1

6
; β2 = β3 =

1

3
; β4 =

1

6
;

(87)

from where we obtain

φ1 = φn

φ2 = φn +
1

2
ΔtH(φ1)

φ3 = φn +
1

2
ΔtH(φ2)

φ4 = φn +
1

2
ΔtH(φ3)

φn+1 = φn +
Δt

6

[
H(φ1) + 2H(φ2) + 2H(φ3) +H(φ4)

]

(88)
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List of Symbols

�̄n+ 1

2 element averaged value §5.3
A normal section of control volume §2
A =

∂F

∂φ
§5

A iteration matrix §3
Adv differential operator for the convective transport part §5.5
C =

vΔt

Δx
Courant number §4

D damping §4.5
D diffusive term §5.4
fn vector arising from the integral along the boundary §5
F flux §5
f0 initial condition §2
g boundary condition §2, §3
h length of the elements §3
H time derivative of the unknown §5.5
H discrete convective matrix §3, §5
I =

√−1 §4
I identity matrix §3
kl l = 1, . . . , N wave number §4
kmax =

2π

λmin
§4.4

kmin =
2π

λmax
§4.4

K stiffness matrix §5
le length of the element §5
L length of the domain §3, §4
M mass matrix §3, §5
ML lumped mass matrix §3, §5
n unit normal to the boundary §5
N = LΔx number of divisions along x §4
N vector of shape functions §3, §5
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rhs right hand side vector §5
RΩ residual §3
S source term §5.4, §5.5
t time §2, §3, §4, §5
tn = t0 + nΔt time stations §3, §4
Δt length of the time interval §3, §4, §5
T time period §4
v velocity §2, §3, §4, §5
x horizontal coordinate §2, §3, §4, §5
xj = jΔx §4
Δx length of the space interval §4
αk coefficient §5.5
βk coefficient §5.5
εnj error at time tn on node j §3, §4
θ = tan−1 Im (ξ)

Re (ξ)
§4.5

λl l = 1, . . . , N wave length §4
λmax maximum wave length §4.4
λmin minimum wave length §4.4
Λ =

2π

ϕ
relative wave length §4

ξ =
φn+1
j

φn
j

§4.5

ξn error amplification §4
φ concentration §2, §4, §5
φ̂ approximated solution §3, §5
φadv solution of a pure convection problem §5.5
φn
j = φ (xj , tn) §4

Φ̂j nodal variable §3, §5
Φ̂n

j = Φ̂j(tn) §3, §5
Φ̄n

j solution of the scheme at time tn on node j §4
¯̂
Φn

j exact solution at time tn on node j §3
ϕ = kΔx phase lag between two consecutive grid points §4
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Ω domain §5
∂Ω boundary of the domain §5
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1 Introduction

The second order equations are the form more widely used both in solids
and in soil dynamics. This Chapter is devoted to present the Discretization
techniques which are used. The solution strategy consists on (i) perform a
discretization in space from which a system of ordinary differential equations
(ODE) is obtained, and (ii) discretize this system in time. An important as-
pect is that of imposing suitable boundary conditions. Here we will present
a simple technique which can be used for elastic or viscoplastic materials
assuming that the wave is planar in the neighbourhood of the boundary.
Finally, we will present some applications to cyclic and dynamic problems.

2 Discretization of Second Order Equations of Solid
Dynamics

2.1 General Problem

The second order equation is the most widely used formulation. It consists
on:

(1) The balance of momentum equation
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divσ + b = ρ
d2u

dt2
(1)

where b is the vector of body forces, σ the stress tensor, and u the
displacement field.

The equivalent vector form is

ST
σ

∗ + b = ρ
∂2u

∂t2
(2)

with

ST =

⎛⎝ ∂x 0 0 ∂y 0 ∂z
0 ∂y 0 ∂x ∂z 0
0 0 ∂z 0 ∂y ∂x

⎞⎠
σ

∗ = (σxx, σyy, σzz , σxy, σyz , σzx)
T

For the sake of simplicity we will drop the star superindexes in what
follows, understanding that whenever the vector form is used, we refer
to the star representation.

(2) A suitable constitutive relation relating stress and strain increments.
In the particular case of an elastoplastic material it is given by

dσ = Depdε (3)

while for a linear elastic material it can be written as

σ = De
ε (4)

(3) A kinematic relation between the strain and displacements

dεij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(5)

or, in vector form⎛⎜⎜⎜⎜⎜⎜⎝
εxx
εyy
εzz
γxy
γyz
γzx

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
∂x 0 0
0 ∂y 0
0 0 ∂z
∂y ∂x 0
0 ∂z ∂y
∂z 0 ∂x

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎝ ux

uy

uz

⎞⎠ = Su (6)
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In above we have assumed small strains, and no rotations have been taken
into account.

Above equations have to be complemented, for the problem to be well posed,
by suitable boundary and initial conditions. Concerning the latter, both dis-
placements and velocities at time zero has to be given.

Boundary conditions can be of different types:

(i) Dirichlet boundary conditions, where displacements or velocities are
prescribed

u− ū = 0 on Γu (7)

(ii) Neumann or prescribed tractions

σijnj − t̄i = 0 on Γq (8)

where nj is the j-th component of the outwards unit vector normal to
the boundary Γq and t̄i is the vector of forces per unit area acting on Γq

(iii) Absorbing wave conditions

ψ
(2)
P = tn + ρcP vn = 0

ψ
(2)
S = tt + ρcSvt = 0

(9)

where the sub indexes t and n refer to the components along the nor-
mal and tangent plane to the boundary.

(iv) Incident wave conditions In the case of a wave entering the domain,
the boundary conditions are

ψ
(2)
P = tn + ρcP vn = ψ

(Inc)
P

ψ
(2)
S = tt + ρcSvt = ψ

(Inc)
S

(10)

where ψ
(Inc)
P and ψ

(Inc)
S can be obtained from the information available

for the incoming wave.

It is important to notice that we have assumed that the wave is plane when
approaching the boundary and that either elastic or elasto-viscoplastic be-
haviour in the absorbing and incident wave boundaries.

In the case of the second order equation, the equations can be discretized
using finite differences, finite elements, or any other alternative techniques.
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Most of the times, finite elements are preferred because of their flexibility.
The discretization process consists on two steps, performed first in space and
then in time. It can be found in texts like those of The system of partial
differential equations can be discretized using standard Galerkin techniques,
as described in Zienkiewicz and Taylor (2000) and Hughes (1987).

2.2 Discretization in Space

The components of the displacement vector are approximated within an
element as

ux ≈ uh
x =

nnode∑
J=1

NJ (x) ûJx (t) (11)

where uh (x, t) is the approximation of the displacements, NJ (x) are the
element shape functions and ûJx (t) the nodal values of the nodal compo-
nents of the displacements, which depend on time and the sub indexes x, y
and z refer to the space components along the axes.

If we introduce the notation

NJ =

⎛⎝ NJ 0 0
0 NJ 0
0 0 NJ

⎞⎠ ûJ =

⎛⎝ ûJx

ûJy

ûJz

⎞⎠ (12)

we can write the approximation as:⎛⎝ ux

uy

uz

⎞⎠ ≈
nnode∑
J=1

⎛⎝ NJ 0 0
0 NJ 0
0 0 NJ

⎞⎠⎛⎝ ûJx

ûJy

ûJz

⎞⎠ (13)

or

u (x, t) ≈ uh (x, t) =
nnode∑
J=1

NJ (x) ûJ (t) =
nnode∑
J=1

NJ (x) ûJ (t) (14)

Above expression can be generalized to global shape functions as:

uh (x, t) = N(g)T (x) û(g) (t)

where
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N(g)T =

⎧⎪⎨⎪⎩
⎛⎜⎝ N

(g)
1 0 0

0 N
(g)
1 0

0 0 N
(g)
1

⎞⎟⎠ . . .

⎛⎜⎝ N
(g)
n 0 0

0 N
(g)
n 0

0 0 N
(g)
n

⎞⎟⎠
⎫⎪⎬⎪⎭

=
{
N

(g)
1 ,N

(g)
2 , . . . ,N(g)

n

} (15a)

û(g) (t) =
{(

û
(g)
1x , û

(g)
1y , û

(g)
1z

)
. . .
(
û(g)
nx , û

(g)
ny , û

(g)
nz

)}T

=
{
û
(g)T
1 , û

(g)T
2 . . . û(g)T

n

}T
(15b)

are the global shape function matrix and displacement vector, n being the
total number of nodes in the finite element mesh. In what follows, for the
sake of simplifying the notation, we will drop the (g) super index.

When the approximated displacement field is substituted into the balance
of momentum equation, we will obtain a residual

RΩ = ρ
∂2uh

∂t2
− b− ST

σ 	= 0 (16)

The Galerkin method consists on finding an approximate solution which is
orthogonal to all shape functions:∫

Ω

NIRΩdΩ =

∫
Ω

NI

(
ρ
∂2uh

∂t2
− b− ST

σ

)
dΩ = 0 (17)

We will analyze the three terms of above integral next.

Concerning the accelerations term, we have∫
Ω

NIρ
∂2uh

∂t2
dΩ =

n∑
J=1

(∫
Ω

ρNINJdΩ

)
d2ûJ

dt2
(18)

where we have used uh (x, t) = NT (x) û (t). We will define the mass matrix
M as:

MIJ =

∫
Ω

ρNINJdΩ (19)

The contribution from the body forces term is:
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FbI =

∫
Ω

NIbdΩ (20)

Finally, we will analyze the contribution of the divergence of the stress

tensor −
∫
Ω

NIS
T
σdΩ. We will consider the tensor form as

−
∫
Ω

NI
∂σij

∂xj
dΩ = 0 (21)

where NI is a scalar shape function, and we will apply the Gauss theorem
to this integral, obtaining

−
∫
Ω

NI
∂σij

∂xj
dΩ =

∫
Ω

∂NI

∂xj
σijdΩ−

∫
Γ

NIσijnjdΓ (22)

The terms
∂NI

∂xj
σij can be collected in vector form, after some algebra, as

the product

BT
I σ

def
=

⎛⎝ ∂xNI 0 0 ∂yNI 0 ∂zNI

0 ∂yNI 0 ∂xNI ∂zNI 0
0 0 ∂zNI 0 ∂yNI ∂xNI

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎝

σxx

σyy

σzz

σxy

σyz

σzx

⎞⎟⎟⎟⎟⎟⎟⎠ (23)

where we have introduced the matrix BI , which can be obtained as:

BI = STNI (24)

Concerning the boundary integral, we will assume that we have boundary
conditions of the four types defined in (7) to (10) in Γu ,Γq ,ΓAbs and ΓInc

which fulfil the condition of Γu ∩ Γq ∩ ΓAbs ∩ ΓInc = {∅} being the null set
the intersection of any pair of them.

Therefore, we can decompose the boundary integral into:∫
Γ

NIσijnjdΓ =

∫
Γu

NIσijnjdΓ +

∫
Γq

NIσijnjdΓ

+

∫
ΓAbs

NIσijnjdΓ +

∫
ΓInc

NIσijnjdΓ

(25)

The first term corresponds to the reactions in all prescribed degrees of free-
dom,
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Γu

NIσijnjdΓ = RIi (26)

The contribution from the boundary where tractions are prescribed is∫
Γq

NIσijnjdΓ =

∫
Γq

NI t̄idΓ = t̄Ii (27)

The contributions from absorbing and incident wave boundaries result in
terms of the type∫

ΓAbs

NIσijnjdΓ = −
∫
ΓAbs

NIAAbs
∂uh

∂t
dΓ

= −
n∑

J=1

(∫
ΓAbs

NINJAAbsdΓ

)
dûJ

dt

(28)

and ∫
ΓInc

NIσijnjdΓ = −
∫
ΓInc

NIAInc
∂uh

∂t
dΓ + F

(Inc)
I (29)

where the matrices AAbs and AInc, and the vector F
(Inc)
I can be obtained

from the Riemann invariants. In the case of 2D problems,

AAbs = T−1VT

where

T =

(
nx ny

−ny nx

)
V =

(
ρcP 0
0 ρcS

)
nx and ny being the components of the normal unit vector to the boundary,
and cP and cS the P and S wave velocities.

Finally, the equation of balance of momentum discretized in space is:

n∑
J=1

MIJ
d2ûJ

dt2
+

∫
Ω

BT
I σdΩ+

n∑
J=1

CIJ
dûJ

dt
−FbI−RI− t̄I+F

(Inc)
I = 0 (30)

where CIJ are given in (28). In a more compact manner

M
d2û

dt2
+C

dû

dt
+

∫
Ω

BT
σdΩ− F = 0 (31)
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where we have introduced

FI = FbI +RI + t̄I − F
(Inc)
I

and the matrix B is the discrete divergence matrix, collecting all BI terms.
It is interesting to note that the contribution from incident and absorbing

boundaries consists on a viscous damping term C
dû

dt
and a forcing term F.

2.3 Discretization in Time

The second step is the discretization in time of the system of ordinary
differential equation (31). Among the many alternatives suggested in the
literature, the Generalized Newmark algorithm proposed by Katona and
Zienkiewicz and described in Zienkiewicz and Taylor (2000) provides a good
combination of computational cost and accuracy. It begins by writing (31)
at time n+ 1:

M
d2û

dt2
+C

dû

dt
+

∫
Ω

BT
σdΩ− F

∣∣∣∣n+1

= 0 (32)

and introducing the variable

Δ¨̂u = ¨̂un+1 − ¨̂un (33)

where the upper dots refer to time derivatives, and approximating the ve-
locities and displacements at time n as

˙̂un+1 =
(
˙̂un +Δt¨̂un

)
+ β1ΔtΔ¨̂u

ûn+1 =

(
ûn +Δt ˙̂un +

1

2
Δt2 ¨̂un

)
+

1

2
β2Δt2Δ¨̂u

(34)

where the terms within brackets are known at time tn and are often referred
to as “predictors”

˙̂un+1 = ˙̂un+1(p) + β1ΔtΔ¨̂u

ûn+1 = ûn+1(p) +
1

2
β2Δt2Δ¨̂u

(35)

Substituting these values on (31), we arrive at the discretized system:

(M+ β1ΔtC)Δ¨̂u+

∫
Ω

BT
σ

∗n+1dΩ +
{
M ¨̂un +C ˙̂un+1(p) − F

}
= 0 (36)
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3 Elastodynamics

In the case of elastic materials, (31) can be simplified. The term

∫
Ω

BT
σdΩ

can be evaluated taking into account (i) the constitutive relation σ = De
ε,

(ii) the relation between strain and displacements ε = Suh and the relation
between the approximated displacement field and the nodal displacements
uh = NT û. The stress can be written as:

σ = DeBû (37)

where we have used the definition BT = NS. Substituting the stress in
(31), we arrive to:

M
d2û

dt2
+C

dû

dt
+Kû− F = 0 (38)

where we have introduced the elastic stiffness matrix K defined as:

K =

∫
Ω

BTDeBdΩ (39)

As in the general case, the second step is the discretization in time. We will
use again (33)-(35), arriving to the discretized system:

(
M+ β1ΔtC+

1

2
β2Δt2K

)
Δ¨̂u+

{
M ¨̂un +C ˙̂un+1(p) +Kûn+1(p) − F

}
= 0

(40)
which can be solved in Δ¨̂u.

3.1 Analysis in the Frequency Domain

We will assume here that both the external forces and the system response
are harmonic functions of the type:

û (x, t) = Re
(
Û(x) exp(−iωt)

)
F (x, t) = Re

(
F̂ exp(−iωt)

) (41)

Substituting into (38) we obtain:{
K− iωC− ω2M

}
Û = F̂ (42)

where F̂ includes (i) the reactions at the nodes where displacements have
been prescribed, (ii) the body forces, (iii) the incident wave forcing.
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From here, we can obtain some important properties of the system. We will
consider first the eigenvalues and eigenmodes of the undamped system:{

K− ω2M
}
Û = 0 (43)

which corresponds to its free oscillations. We will denote by ωk and Û(k)

its k-th eigenvalue and eigenvector (or natural frequency and normal mode
of vibration) which are obtained from:

det
(
K− ω2M

)
= 0 (44)

In what follows we will assume that the normalmodes have been normalized
with respect to the mass matrix M as:

Û(k)TMÛ(k) = 1

An important property of the modes is their orthogonality. If we consider
two different modes (i) and (j), we will have:

KÛ(i) = ω2
iMÛ(i)

KÛ(j) = ω2
jMÛ(j)

(45)

We will premultiply them by Û(j)T and Û(i)T respectively, subtract both
equations and take into account the symmetry of both stiffness and mass
matrices, arriving to:

Û(j)TKÛ(i) − Û(i)TKÛ(j) = 0 =
(
ω2
i − ω2

j

)
Û(i)TKÛ(j)

If the natural frequencies (i) and (j) are different, we will have:

Û(i)TKÛ(j) = 0 (46)

The same method can be applied to obtain:

Û(i)TMÛ(j) = 0 (47)

Knowledge of the naturalmodes and frequencies of a system is important, as
it provides insight on its behaviour. For instance, when designing a dam on
a rock foundation under earthquake action, we can compare the frequency
spectrum of the earthquake with the natural modes of the dam, and change
the design if they coincide.
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The second type of analysis which can be done is the harmonic response,
which consists on applying forcing with different angular frequencies and
obtain the response of the system. The solution can be written as:

Û =
{
K− iωC− ω2M

}−1
F̂ (48)

In the case of undamped systems, we have:

Û =
{
K− ω2M

}−1
F̂

In this case, when we excite the system with one of its natural frequencies,
we obtain an infinite response, and we say that the system is in resonance.
In real cases, this will not happen because as the response increases, the
system turns non linear and some damping appears. However, failure of the
structure can happen in this situation.
The analysis is usually performed by selecting a control degree of freedom
(for instance, horizontal displacement at the top of the dam), and studying
its variation when the frequency changes.

4 Coupled Problems

4.1 The Displacement-Pore Pressure Swansea Model

The most widely used form of Biot-Zienkiewicz equations is the so called
“displacement- pore pressure” model, which is obtained in the cases where
fluid accelerations are small by eliminating the Darcy velocity. The main
equations are:

div (σ′ − pwI) + ρb = ρ
d2u

dt2
(49a)

1

Q∗

dpw
dt

+ div

(
du

dt

)
− div (kwgradpw) = 0 (49b)

together with the constitutive and kinematics relations.

The system of partial differential equations can be discretized using stan-
dard Galerkin techniques, as described in Zienkiewicz and Taylor (2000)
Zienkiewicz et al. (2000). The displacement and pressure are discretized as
u = Nuû and pw = Npp̂w, resulting on the nonlinear system
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M
d2û

dt2
+

∫
Ω

BT
σ

′dΩ−Qp̂w − fu = 0

QT dû

dt
+Hp̂w +C

dp̂w

dt
− fp = 0

(50)

where

M =

∫
Ω

ρNT
uNudΩ C =

∫
Ω

1

Q∗
NT

p NpdΩ

Q =

∫
Ω

SwαB
TmNpdΩ H =

∫
∇NT

p kw∇NpdΩ

(51)

and

fu =

∫
Ω

NT
ubdΩ +

∫
Γt

NT
u t̄dΓ

fp =

∫
Γq

NT
p kw

∂p

∂N
dΓ +

∫
Ω

∇NT
p kwρwbdΩ−

(∫
Ω

∇NpkwNudΩ

)
¨̂u−

∫
Ω

NT
p s0dΩ

(52)
in (51) α is the Biot parameter, which in the case of soils is assumed to be 1,
Q∗ the mixed volumetric stiffness of water and soil particles, Sw the degree
of saturation, m the vector representation of the identity matrix, which for
3D situations is (1, 1, 1, 0, 0, 0)T ; in (52) s0 represents volume changes in
the soil caused by temperature and ∂p/∂n is the derivative of the pressure
along the normal to the boundary.

Time derivatives of displacements and pressures are approximated in a typ-
ical step (n) of computation using the Generalized Newmark scheme GN22
for displacements and GN11 for pore pressures, as proposed by Katona and
Zienkiewicz (Zienkiewicz and Taylor, 2000), which uses as main variables
Δün and Δṗn

w at time step n. From here, we arrive at the following set of
discretized equations:

MΔ¨̂un +

∫
BT

σ
′n+1 − θΔtQΔ ˙̂pn

w − Fn+1
u = Φu = 0

β1ΔtQTΔ¨̂un + (ΔtθH+C)Δ ˙̂pn
w − Fn+1

p = Φp = 0

(53)

This non linear system can be solved using a Newton-Raphson scheme with
a suitable Jacobian matrix.
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4.2 The u−W Model

One of the advantages of the displacement (velocity)-pressure model is the
smaller number of unknowns in comparison to the fullmodel. Themodel has
been obtained assuming that the fluid accelerations are small, and therefore
accuracy will be lost as pore fluid accelerations become important. The lim-
its of validity of different approximations have been proposed by Zienkiewicz
et al. (1980). Indeed, they propose three regions, denoted as (i) slow, (ii)
moderate and (iii) fast phenomena.

It is possible to reformulate the full system in terms of displacements of the
soil skeleton and the pore water relative to it (López Querol and Blázquez,
2006; López Querol et al., 2007). The model is formulated in terms of solid
skeleton and pore water displacements relative to the skeleton. The final
system of equations is:

div (dσ) +Qgrad [div (du+ dW)] + ρdb = ρdü+ ρwdẄ

Qgrad [div (du+ dW)] + ρwdb− k−1dẆ = ρwdü+
ρw
n

dẄ
(54)

In above, we have introduced the variable W to denote the integral of the
Darcy’s velocity while k−1 represents the inverse of the permeability tensor
(1/kw in the case it is a scalar). Pore pressures are computed using the
equation of the balance of mass of the fluid.

4.3 A Note on Equal Order of Interpolation and Stabilization
Techniques

Soil dynamics problems often involve a large number of time steps and
meshes with a large number of nodes which results on large times of com-
putation. Time can be saved by using explicit schemes when possible, and
elements with a low order of interpolation, such as triangles in 2D an tetra-
hedra in 3D. If such elements are used, the displacement (or the velocity)
field will be approximated using linear functions, and the pore pressures
will have to be approximated using the same shape functions. Elements
will be triangles with 3 nodes both for displacements and pore pressures,
for instance.

Such equal order of interpolation elements present severe oscillations in the
pore pressure field when the material has very small permeability and both
the solid particles and the pore fluid have small compressibility. The sit-
uation is of similar nature to that found when using mixed formulations



www.manaraa.com

342 M. Pastor et al.

in Solid and Fluid Dynamics. The reason is that these mixed elements
with equal interpolation do not satisfy the Babuska-Brezzi (Babuška, 1973;
Brezzi, 1974) condition which is necessary to ensure stability or the much
simpler patch test proposed by Zienkiewicz et al. (1986) for mixed formu-
lations. It is important to note that the latter is a necessary but not a
sufficient condition for stability. The interested reader can find in the text
of Bathe (1996) a detailed description. Allowed elements are for instance,
quadrilaterals Q8P4 with quadratic approximation of the displacements and
nilinear for the pore pressure, or the T6P3 triangles, both in 2D.

In order to use the simple linear triangles or tetrahedras for computational
efficiency circumventing the limitations imposed by the Babuska-Brezzi con-
ditions, special stabilization techniques have to be used. The problem has
attracted the attention of numerous researchers from Fluid, Solid and Soil
Mechanics in the past years. In the context of Fluid Dynamics, it is worth
mentioning the work of Brezzi and Pitkaranta (1984); Hughes et al. (1986);
Hafez and Soliman (1991); Zienkiewicz and Wu (1991), just to mention a
few.

Thesemethods have been extended to Soil Dynamics problems by Zienkiewicz
et al. (1993, 1994) and to Soil Mechanics problems by Pastor et al. (1996,
1997).

One of the most simple yet effective ways of stabilization is the fractional
step algorithm, which was introduced by Chorin (1968) as a device to allow
the use of standard time integration techniques in fluid dynamics problems.
Among the several alternative formulations some forms were found later to
provide the required stabilization for elements with equal order of interpola-
tion of velocities and pressures. The discovery was first made by Schneider
et al. (1978) and Kawahara and Ohmiya (1985) and later justified by Cod-
ina et al. (1995).

The method has been extended to Solid Dynamics by Zienkiewicz et al.
(1998) and Quecedo et al. (2000), and to Soil Dynamics problems by Pastor
et al. (1999a,b) and Mabssout et al. (2006). It is also worth noticing the
work of Mira et al. (2003) for enhanced strain elements.

The u− pw equations are written as:

ρ
dv

dt
= divσ′ − gradpw + ρb (55a)
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1

Q∗

dpw
dt

= div (kwgradpw)− divv (55b)

σ = σ
′ − pwI (55c)

dσ′ = Depdε (55d)

The first equation is written in an incremental time using an intermediate
velocity v∗ as:

ρ
v∗ − vn

Δt
= divσ′ + ρb|n (56a)

ρ
vn+1 − v∗

Δt
= −gradpw|n+θ2 = −grad (pw + θ2Δpw) (56b)

where the increment Δpw is defined by

pn+1
w = pnw +Δpw

In above, θ2 = 1/2 is usually chosen. Eq. (55b) is then discretized in time
as:

1

Q∗

Δpw
Δt

= div (kwgradpw)|n − divvn+θ1 (57)

where we select θ1 = 1.

The velocity vn+1 can be obtained from (56b) as

vn+1 = v∗ − Δt

ρ
grad (pw + θ2Δpw) (58)

After substitution in (57), we obtain

(
1

Q∗
− Δt2θ2

ρ
∇2

)
Δpw
Δt

= div (kwgradpw)|n − divv∗ +Δt∇2pnw (59)

The fractional step method consist on performing the time step computa-
tions as follows:

(i) First of all, obtain the intermediate velocity field v∗ using (56):

v∗ = vn +
Δt

ρ
(divσ′ + ρb)

n
(60)
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(ii) Then, solve implicitly (59) to obtain Δpw and pn+1
w = pnw +Δpw

(
1

Q∗
− Δt2θ2

ρ
∇2

)
Δpw
Δt

= div (kwgradpw)|n−divv∗+Δt∇2pnw (61)

(iii) Finally, obtain the velocity field at time n+ 1 using (58)

vn+1 = v∗ − Δt

ρ
grad (pw + θ2Δpw) (62)

Equations (60)-(62) can be discretized using a standard Galerkin finite el-
ement technique, as shown in Zienkiewicz et al. (1999). It is important to
notice that the time step is limited for the dry solid skeleton response, as
the pore pressure laplacian equation has been solved implicitly.

5 Application Cases

The purpose of this Section is to provide a selection of representative ex-
amples of most of the alternative modelling techniques described in the
preceding Sections.

5.1 Liquefaction of a Sand Layer Under Earthquake Loading

Fig. 1 shows a fully saturated sand layer subjected to a horizontal earth-
quake. The seismic input is the accelerogram given in Fig. 2 that corre-
spond to the NS component accelerogram of the El Salvador earthquake
13/01/2001 in Santa Tecla. The sand layer is modelled by a sand column
with both sides and the bottom assumed impermeable. Pore pressures are
assumed to be zero at the surface of the sand layer. Repeated boundary
conditions are assumed for the lateral nodes, which implies that the dis-
placement of a right hand side node equals that of the corresponding left
hand side node.

The finite element mesh is shown in Fig. 3 and consists of stabilized four
node quadrilateral elements, where bilinear shape functions are used both
for displacements and pressures. The material is assumed to be a very
loose sand. Constitutive behaviour has been modelled using the Pastor-
Zienkiewicz mode. Material properties and other relevant data used in the
analysis are listed in Tab. 1 and 2.

The results can be seen in Fig. 3, which depicts the evolution of the pore
pressure and the mean effective stress at stations A to E. It is interesting to
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Figure 1. Soil layer problem: finite element mesh.
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Figure 2. Seismic input: NS component accelerogram of the El Salvador
earthquake 13/01/2001 in Santa Tecla.

note that the pore pressure increases and reaches a plateau between 7 and
17 seconds depending on the depth, and the mean effective stress decreases
to zero.
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Fig. 4 provides further insight into the phenomenon of liquefaction. We
have plotted profiles of pore pressure at several instants together with the
vertical stress. In this way, when the excess pore pressure coincides with the
vertical effective stress, it is possible to see how liquefaction extends from
the surface. At 17 s. all the column is liquefied.

Figure 3. Evolution of excess pore pressure and mean effective stress at
several stations.

Table 1. Data used in sand layer analysis.

ρs (kg/m3) ρw (kg/m3) Ks (Pa) Kw (Pa) n k (m/s)

2720. 980. 1.e20 1.092e9 0.363 2.1e− 3

Table 2. Pastor-Zienkiewicz soil model parameters.

K0 (kPa) G0 (kPa) Mg Mf αg = αf H0 β0 β1 HU (kPa) γDM = γU

45000. 22500. 1-5 0.4 0.45 350. 4.2 0.2 6.e3 2
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Figure 4. Vertical profiles of excess pore pressure at different times showing
the extent of liquefaction.

5.2 Liquefaction Failure of an Embankment Under Earthquake
Action

The case we will be considered next is that of an earthquake induced
flowslide in very loose saturated sand. Here it is important to notice that
proposed model is intended to describe the initiation of failure. In order
to cope with the propagation of the flowslide, the authors have recently
proposed a fluid-like, depth integrated model formulated in an Eulerian
framework.

The problem consists of an embankment 10 m in height with slopes 2:1,
founded on a sand layer which extends 10 m in depth and lies on a rigid
rock bed. The material of both the embankment and the foundation is a
very loose saturated sand. Initial conditions correspond to geostatic equi-
librium under gravity forces. Suction at the surface has been assumed to
be equal to -20 kPa. The finite element mesh can be seen in Fig. 5 and
consists on 500 quadrilaterals with 8 nodes for displacements and 4 for pore
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pressures. A reduced integration rule has been used in the solid part to
avoid locking. The number of nodes is 1611, with 3535 degrees of freedom.

 

Figure 5. Finite element mesh of the embankment.

Loading is applied by prescribing horizontal accelerations at the base. We
have used the input motion defined in Fig. 2. A simplified absorbing bound-
ary condition has been applied at lateral boundaries. Concerning pore pres-
sures, it has been assumed that no flux occurs at artificial boundaries, and
the constant value of -20 kPa has been kept at the surface.

The behaviour of the loosematerial is represented using the Pastor-Zienkiewicz
model for sand, Tab. 1 and 2. To better understand this behaviour we sim-
ulate a loading-unloading-reloading undrained triaxial test. The material
loses progressively its resistant capacity, the effective stress decreases and
the pore pressure increases, Fig. 6.

The results can be seen in Figs. 7-9, where the contours of pore pressure,
p′w/p

′

w0 and displacements are given at different times. The ratio between
the mean effective confining pressure and its initial value p′w/p

′

w0 has been
used as an indicator of the extent of the liquefied zones. From these results,
it can be concluded that failure of the embankment is caused by liquefaction
of the outer liquefied zones.
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Figure 6. Undrained triaxial simulation of the loose sand: loading, unload-
ing, reloading path.

 

t = 0.4 s

t = 0.5 s

t = 0.6 s

t = 0.7 s

Figure 7. Evolution of excess pore pressure contour [Pa].
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t = 0.4 s

t = 0.5 s

t = 0.6 s

t = 0.7 s

Figure 8. Evolution of p′w/p
′

w0.

 

t = 0.7 s

Figure 9. Deformation contour [m].

5.3 Liquefaction of Marine Foundations Under Wave Action

The proposed example concerns a breakwater structure of caisson type sub-
jected to continued wave loading. The 24x24m concrete caisson rests on a
rubble-mound bedding layer that transmits loading to the sand foundation.
The finite element mesh is reproduced in Fig. 10.

Loading and unloading sand behavior is described using the Pastor-Zienkiewicz
model. This constitutive model is able to reproduce the experimental cyclic
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A

Figure 10. Finite element mesh of the marine structure.

non-drained triaxial test on the considered material with a relative density
Dr equal to 63% as shown in Fig. 11.

Figure 11. Cyclic non-drained triaxial test on the considered sand (Dr =
63%): experimental and computed results.

Concerning the load, the wave loading is computed using an external pro-
gram solving the Navier Stokes equations and the free surface problem with
VOF techniques. Pore-pressures and hydrostatic loads histories are pre-
scribed on the red line shown in Fig. 10. It corresponds to a high intensity
storm with waves reaching 8 m height and 12 s period.

The excess pore water pressure and the mean effective stress contours af-
ter 20 minutes (approximately 100 wave cycles) are plotted in Fig. 12. It
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can be seen how the pore water pressure increases and how the stresses are
reorganized under the caisson. Fig. 13 plots the time evolution of the ex-
cess pore pressure and themean effective stress in point A defined in Fig. 10.

 

Figure 12. Excess pore water pressure and mean effective stress contours
(in Pa) after 20 minutes.
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Figure 13. Time evolution of the excess pore pressure and the mean effec-
tive stress in point A.

The increase of pore pressure causes a dramatic reduction of soil strength.
Indeed, the liquefied soil behaves as a viscous fluid where the structure can
sink. This failure mechanism can be accelerated during earthquake events.

5.4 Application of u−W Formulation to Dynamic Consolidation

As it was previously mentioned, the u −W formulation, involves a higher
number of degrees of freedom than the classic Swansea model. However, in
addition of being more accurate when the fluid acceleration displays high
values, this formulation, only based on displacements, performs other im-
portant advantages, like a greater stability when the permeability of the
soil is very low or when the mixture formed by the solid skeleton and the
fluid filling the voids is close to incompressible. Furthermore, a boundary
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condition of pressure is not necessary in this u −W model, since the pore
pressure is not an unknown. This circumstance allows us to obtain, as a
result of the model, the displacements of the fluid throughout the analysed
geometry, even at a saturated soil boundary. To illustrate this fact, the
application of the u − W formulation to a numerical example of dynamic
consolidation is presented next.

Fig. 14 shows the deformed shape of a symmetric plane strain problem at
two different times during the impact. The solid phase behaviour is mod-
elled by means of the Pastor-Zienkiewicz law for sands. The loading zone is
indicated in the figures, at the upper boundary, and the axis of symmetry is
the left boundary. The arrows in the soil show the fluid velocity relative to
the solid phase, and therefore, the flow directions within the whole geometry.
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Figure 14. Deformed geometry of a plane strain numerical model of dy-
namic consolidation at 0.01 and 0.045 seconds (López Querol and Blázquez,
2006).

The impact due to a mass falling in the loading area is applied in the model
by means of a set equal nodal forces, which added all together, in this
particular case, follow the expression given by

F (t) = Fmax · sin(20πt) t ≤ 0.05 s

F (t) = 0 t > 0.05 s

with a maximum force, Fmax, equal to 20MN, equivalent to a mass of 20
T falling from 11.5 m (Pan and Selby, 2002). Initially, the water table is
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located at the upper boundary, where the arrows directions give the points
of exit of the water during the impact. As it can be seen, this exit of water
moves from the loading zone to the right boundary as the time passes.
Thus, since at 0.01 seconds this point is located 0.6 m far from loading
zone, after 0.045 seconds it appears at 4.30 m. The numerical results give a
“wave of dryness” around the loading zone, which reproduces several field
observations, like the field test at Algeciras (Spain), provided in Fig. 15.

 t = 0.24 s econds  t = 1.28 seconds

Figure 15. Pictures of an impact on a field test of dynamic consolidation
on saturated sand in Algeciras (Spain) at instants 0.24 and 1.28 seconds
(López Querol and Blázquez, 2006).
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List of Symbols

�̇ time derivative §2.3, §3, §4
e elastic §2, §3
ep elastoplastic §2, §4.3
(g) global §2.2
Inc incoming §2.1
n component normal to the boundary §2.1
n value at time step n §4
(p) predictors §2.3, §3
t component tangent to the boundary §2.1
AAbs matrix related to the Riemann invariants on ΓAbs §2.2
AInc matrix related to the Riemann invariants on ΓInc §2.2
b vector of body forces §2, §4
B discrete divergence matrix (colletting all BI terms) §2, §3, §4.1
BI = STNI §2.2
C matrix related to the wave boundaries §2, §3
C =

∫
Ω

1

Q∗
NT

p NpdΩ §4.1
cP P wave velocity §2
cS S wave velocity §2
D constitutive tensor §2, §3, §4.3
Dr relative density §5.3
fp pressure forcing term §4.1
fu displacement forcing term §4.1
F force §5.4
Fmax maximum force §5.4
F forcing term (colletting all FI terms) §2, §3
F̂ auxiliary forcing term §3.1
FI = FbI +RI + t̄I − F

(Inc)
I §2.2

FbI contribution from the body forces term on node I §2.2
F

(Inc)
bI contribution from incident wave boundary on node I §2.2
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H =

∫
∇NT

p kw∇NpdΩ §4.1
I identity tensor §4
k permeability tensor §4.2
kw permeability §4
K elastic stiffness matrix §3
m vector representation of the identity matrix §4.1
M mass matrix §2, §3
M =

∫
Ω

ρNT
uNudΩ §4.1

n total number of nodes in the finite element mesh §2.2
n time step §2.3, §4.1
n porosity §4.2
n outwards unit vector normal to the boundary Γq §2, §4.1
N global shape function matrix §2, §3
NJ element shape functions §2.2

NJ =

⎛⎝ NJ 0 0
0 NJ 0
0 0 NJ

⎞⎠ §2.2

Np pressure shape function matrix §4.1
Nu displacement shape function matrix §4.1
pw pore pressure §4, §5.2
p̂w global vector of nodal value of the pore pressure §4.1
Q =

∫
Ω

SwαB
TmNpdΩ §4.1

Q∗ mixed volumetric stiffness of water and solid particles §4
RI contribution due to the reactions in all prescribed degrees

of freedom on node I
§2.2

RΩ residual vector §2.2
s0 vector representing volume changes in the soil caused by

temperature
§4.1

S operator matrix §2, §3
Sw degree of saturation §4.1
t time §2, §3, §4, §5
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t vector of forces per unit area acting on Γq §2, §4
t̄I I = 1, . . . , n contribution from the boundary where trac-

tions are prescribed
§2.2

T =

(
nx ny

−ny nx

)
§2.2

u displacement field §2 §4
û global vector of nodal value of the displacement §2, §3, §4.1
uh approximated displacement vector §2, §3
ûJ vector of nodal value of the displacement §2.2
Û auxiliary variable §3.1
Û(k) normal mode of vibration §3.1
v velocity vector §2, §4.3
v∗ intermediate velocity §4.3
V =

(
ρcP 0
0 ρcS

)
§2.2

W integral of the Darcy’s velocity §4.2
x vector of coordinates §2, §3, §4
α Biot parameter §4.1
β1 parameter §2.3, §3, §4.1
β2 parameter §2.3, §3
ΓAbs absorbing wave boundary §2.2
ΓInc incident wave boundary §2.2
Γq Neumann boundary §2
Γu Dirichlet boundary §2
ε strain tensor §2, §3, §4
θ parameter §4.1
θ1 parameter §4.3
θ2 parameter §4.3
ρ density §2, §3, §4
ρw water density §4.2
σ stress tensor §2, §3, §4
σ

∗ stress tensor in vector form §2, §3
σ

′ effective stress tensor §4
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ψ
(2)
k k = P, S Riemann invariant §2.1

ω angular frequence §3.1
ωk natural frequency of vibration §3.1
Ω domain §2, §3, §4
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Cyclic Mechanical Response of Rigid Bodies
Interacting With Sand Strata
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1 Introduction

In this chapter, the cyclic/dynamic interaction of rigid bodies with homo-
geneous/heterogeneous sand strata is taken into consideration. For the sake
of simplicity, the problem is discussed chiefly with reference to strip shallow
footings, but many considerations concerning different systems like buried
pipes will be also introduced. The objective of this chapter is mainly to
outline the features of a sort of homogeneization theory called the ‘macro-
element approach’ and to demonstrate its capabilities for describing the
interaction between structures and soil strata even when complex cyclic
loading is taken into account. As far as shallow foundations are concerned,
in the recent past many authors have demonstrated that the use of the
macroelement approach provides a useful tool for reproducing the structural
response of the superstructures without totally disregarding geotechnical is-
sues.

For instance, when the superstructure is highly redundant the loads
transmitted to the foundation by the superstructure are a function of the
irreversible settlements of the footing, the structural/geotechnical problems
become more dramatically coupled and disregarding the coupling can some-
times become quite unsafe (di Prisco et al., 2004).

Indeed, in standard structural design, soil–structure interaction prob-
lems are approached by uncoupling geotechnical and structural analyses.
For instance, the cyclic/dynamic response of foundation soil strata is either
neglected or, once the structural problem is solved, addressed separately
by employing 2D/3D numerical FEM codes. The soil–structure interaction
problem is very rarely approached in a fully coupled manner; this is done
by performing either small/large scale and centrifuge experimental tests
(Paolucci et al., 2007; PWRI, 2005; Zeng and Steedman, 1998 and Gajan
et al., 2005) or cyclic/dynamic finite element numerical analyses of large
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spatial domains, including the superstructure, the foundation and the sur-
rounding soil. In principle, these numerical analyses, when a sufficiently
sophisticated constitutive relationship is numerically implemented, allow us
to take the soil–structure cyclic/dynamic interaction into account, but, un-
fortunately, since they are very time consuming, they cannot be used to
perform extensive parametric numerical campaigns and to be employed as
heuristic tools.

In contrast, cyclic soil–structure interaction problems can be successfully
approached by employing the macro-element concept (Nova and Montrasio,
1991; Paolucci, 1997; Cremer et al., 2001; Cremer et al., 2002 and Pape and
Sieffert, 2001) and this is particularly suitable in case of cyclic environmental
loading (like windy or sea/ocean waves actions) for two reasons:

1. the foundation is in this case subjected to inclined and eccentric loads,

2. the number of cycles to be considered is enormous.

The main implicit assumption which the macroelement theory is based
on is to subdivide the entire domain into three sub-structures: (i) the far
field, (ii) the near field and (iii) the superstructure. The far field is the
zone of the soil stratum which is not influenced by the presence of the
structure; displacements can be there assumed to be known. The near-field
consists of the soil stratum zone where soil–structure interaction irreversible
mechanisms become dominant. In this perspective the definition of the
spatial domain where plastic/irreversible strains develop is essential: for
instance, in the case of rigid shallow strip footings, the size of the domain is
imposed by the foundation width and embedment. Sometimes the definition
of the boundaries of this domain is quite ambiguous since its geometry
evolves with time. Regarding this point, in the following the case of shallow
footings placed on loose sand strata will be discussed.

As is commonly done for standard plastic hinges developing in steel
frames, the mechanical response of the entire substructure is interpreted as
the addition of two terms: one associated with the elastic response of the
entire infinite half-space and one to the plastic hinge.

2 Generalised Stress–Strain Variables: Shallow
Foundations Under Monotonically Increasing Loading

As already observed by Nova and Montrasio (1991) with reference to shal-
low footings, when the interacting body with respect to the soil stratum
can be assumed to be rigid, the mechanical interaction can be described by
employing (at least in plane strain conditions) only three generalised stress
(the vertical load component V , the horizontal load component H , and the
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overturning moment M) and three generalised strain variables (the vertical
displacement v, the horizontal displacement u and the foundation rotation
ϑ) (Fig. 1a). For convenience, the generalised stress variables (Prager, 1955)
can be summarised in a three dimensional vector Q, whereas the associated
generalised strain variables can be collected in a corresponding three dimen-
sional q vector. By disregarding, for the sake of simplicity, any time de-
pendence of the system mechanical behaviour and by taking the developing
of irreversible generalised strains (that is the analonomy of the constitutive
relationship) into account, an incremental constitutive relationship can be
written:

Q̇ = D(Q, Q̇,ψ(q))q̇ (1)

where D stands for an incremental constitutive matrix depending only on
the current state of stress, on the current stress rate Q̇, on the previous his-
tory of the system that in (1) is described by the vector of hidden variables ψ
assumed to be dependent on the accumulated generalised plastic strain qp.
The macro-element theory was initially conceived for rigid strip foundations

B

z

V, v

H, u

M, �

(a)

5

\

6

]
(b)

Figure 1. Generalised stresses and generalised strains for (a) a shallow
strip footing of width B embedded at a depth Z, (b) a pipe embedded in a
soil stratum (where Z stands for the depth of the embedment).

placed on homogeneous dry sand strata under monotonically increasing in-
clined and eccentric loading and more recently was extended to describe
the system mechanical response under cyclic loading (di Prisco et al., 1998;
Cremer et al., 2001; di Prisco et al., 2003a; di Prisco et al., 2003b; di Prisco
et al., 2003c). The theory has been also extended to the case of rectangular
shallow footings (Grange et al., 2008; Grange et al., 2009): in this case both
vectors Q and q become six dimensional. Obviously, by taking into account
another type of structure, both the dimensions and the single components
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of both vectors Q̇ and q̇ will change. For instance, in Fig. 1a the case of a
buried pipe is considered. For each cross section, four different kinematic
and static components will be assigned: the two components acting in the
cross section plane V and H , respectively, the longitudinal action N and
the torsional component T .

If the deformable half space interacting with the rigid body is assumed to
behave elastically, the stiffness matrix in (1) becomes diagonal and its three
terms can be evaluated by employing well known empirical or analytical
solutions (Sieffert and Cevaer, 1991). Since the problem under consideration
is elliptic, the domain influenced by the local interaction becomes unlimited.
Moreover, as is well known, in this specific case (which is essentially 2D), if
the soil is assumed to be elastic and homogeneous (that is elastic parameters
to be constant within the unlimited spatial domain), the stiffness vanishes.

By contrast, when irreversible strains progressively develop and in particular
a local failure mechanism activates, the process concentrates and, according
to a well known process in the case of metal beams (Fig. 2), a sort of plastic
hinge develops. Thus the stiffness matrix in (1) is intended to describe the
response of the system during the entire process evolution, from the very
beginning to the eventual final collapse. As is well known, if the steel beam
schematically shown in Fig. 2a is considered, and a rigid-plastic constitutive
relationship for the plastic hinge is assumed, the structural response of
Fig. 2d is obtained, where PU is the ultimate load and δ is the maximum
vertical displacement of the beam. Therefore, analogously, the inclination
of the straight line passing through the origin of Fig. 2d, related to the
elastic response of the beam, will correspond with the elastic response of
the half space and the ultimate load PU , associated with the development
of the plastic hinge in the middle of the beam, will ideally correspond with
the activation of the failure mechanism under the shallow footing.

If the mechanical local response of the cross section, where the plastic hinge
develops, was more precisely described and the progressive plasticization of
the cross section accounted for, the rigid-plastic scheme suggested in Fig. 2c
would have to be abandoned and a sort of generalised strain hardening
relationship to be chosen. Analogously, in the case of shallow footings,
irreversible strains locally develop much earlier than the failure mechanism
activation and more sophisticated relationships have to be introduced.

The previously defined analogy between the beam and the considered in-
teraction problem becomes a bit more obscure when the local problem is
tackled. Indeed, as is well known, in the case of the beam, the gener-
alised stresses are, for instance, the bending moment, the axial force, the
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Figure 2. Structural analogy: (a) steel beam L long under point loading,
(b) development of the plastic hinge of characteristic length b, (c) plastic
hinge constitutive relationship (rigid-plastic assumption) and (d) structural
response.

torsional moment. By contrast, in the case of a shallow footing, the gen-
eralised stresses, as are indicated in (1), coincide with the external loads
themselves. This lack of symmetry between the two mechanical systems is
essentially due to the types of compared processes: in the case of the beam
the structural response is analysed; in contrast, in the case of the footing,
the local process of failure dominates the system response.

Before introducing the theoretical assumptions which the macro-element
concept is based on, in the following section a series of experimental obser-
vations concerning the static interaction between shallow footings and dry
sand strata are summarised.

2.1 Experimental Evidence

The main information, concerning the mechanical response of rigid shallow
foundations under monotonically increasing loads, can be derived from the
large amount of experimental test results published in literature in the last
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three decades and can be very schematically summarised as it follows:

1. Even during monotonically increasing loading tests, the response of
the system is not linear from the very beginning of the test;

2. Coupling between the different generalised stress/strain variables is
evident from very low generalised stress levels and dominates when
failure is approached. For example, when a horizontal monotonically
increasing load is applied vertical displacements develop although the
vertical load is kept constant and the overturning moment nil;

3. Bearing capacity is severely affected both by the inclination and the
eccentricity of the loads imposed; the so-called interaction domain de-
scribes this dependence. The interaction domain is a function of (i)
the nature of the foundation soil (the relative density severely influ-
ences its size and shape), (ii) the roughness, shape and embedment of
the footing itself. As is suggested by the schematic plots of Fig. 3, if
the penetration mechanism was uncoupled with respect either to the
sliding mechanism or to the toppling mechanism, as can be inferred
when rigid and infinitely resistant underlying strata are considered,
the interaction domains in the two planes H − V and M − V , respec-
tively, would be uncoupled, too. Indeed, sliding would always concern
uniquely the interface zone and toppling would consist solely in the
result of the detachment between the footing and the underlying stra-
tum. On the contrary, the deformability and the limited strength of
the soil necessarily introduce the previously cited coupling and in-
teraction domains cannot be described by the four straight lines of
Fig. 3.

4. Failure mechanism geometries severely depend on the applied com-
bination of the generalised stress variables: to each point belonging
to the interaction domain corresponds a unique failure mechanism.
Two exemplifying pictures (after Nova and Montrasio (1991)) for a
rigid strip shallow footing under a vertical centred load and an in-
clined centred load positioned on a homogeneous dense sand stratum
respectively, are in Fig. 4.

5. The experimental results can be easily interpolated in a three dimen-
sional space by employing expressions, quite common in the literature
(Butterfield and Ticof, 1979; Georgiadis and Butterfield, 1988; Nova
and Montrasio, 1991; Butterfield and Gottardi, 1994; Nova and Mon-
trasio, 1997), like that reported here below introduced by Nova and
Montrasio (1991):

F =

(
M

ψB

)2

+

(
H

μ

)2

− V 2

(
1− V

Vmax

)2β

≤ 0, (2)
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where ψ, μ, β and Vmax are parameters describing, respectively, the
shape and size of the failure locus. A geometrical representation of the
expression given in (2) is reported in an opportunely non-dimensional
space in Fig. 5.

6. When overturning moments are applied (or better, under generalised
strain controlled conditions, when tilting angles are imposed), local
measures testify to a process of progressive concentration of the ver-
tical stresses transmitted by the footing to the soil (and vice versa).
As is schematically suggested in Fig. 6a, the uplift of the foundation
dominates the response of the system. The rB (Fig. 6a) zone is pro-
gressively detached with respect to the underlying soil. In Fig. 6b
the vertical stress distributions are reported as a function of the tilt-
ing angle ϑ imposed during a cyclic test performed on a dense sand
stratum (PWRI, 2005).

7. An interaction domain can be also defined to interpret the mechanical
response at failure of pipes. In this case the rigid footing is substi-
tuted by the cross section of the pipe and tilting moment by a torque
moment.

5
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Figure 3. Schematic representation of uncoupled interaction domains for a
shallow rigid strip footing, in the H − V plane (a) and in the M − V plane
(b).

8. As is well known, when the soil is sufficiently rigid, standard general
shear failure mechanisms develop; by contrast, when the soil stiffness
is quite small (loose sand strata) a punching mechanism takes place
and the corresponding bearing capacity cannot be evaluated. Indeed,
owing to second order effects (the foundation sinks within the soil and
large displacements must be accounted for) the corresponding gener-
alised stress–strain curve is characterised by a continuous increase in
the stress component: peaks and plateaus are absent. A plateau can
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be envisaged solely if the foundation level is artificially maintained
coincident with the ground level.

(a) (b)

Figure 4. Laboratory small scale experimental test results after (Nova
and Montrasio, 1991): failure mechanisms concerning a rigid shallow strip
footing under a vertical centred load (a) and an inclined centred load (b).

�

�



Figure 5. Interaction domain in the non-dimensional space
(m=M/ψBVmax; h=H/μVmax; ξ=V/Vmax).

9. If the stratum is not homogeneous, the shape of the interaction domain
and, analogously, the shape of the corresponding failure mechanism,
can change abruptly. For instance in Fig. 7, (these pictures refer to
small scale experimental tests performed on rigid strip footings placed
on loose sand strata (di Prisco et al., 2003a)), the evolution of the
failure mechanism due to the presence of georeinforcements, placed
within the underlying stratum according to the geometry of Fig. 7c, is
illustrated. The failure mechanism is, indeed, much deeper than that
obtained without geogrids (Fig. 7a).

10. The symmetry of the interaction domain with respect to the V axis
is lost in case of either inclined strata or anisotropy of soil.
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Figure 6. Laboratory small scale experimental test results after (Shirato
et al., 2008): uplift of the rigid shallow foundation (a) and vertical stress
distribution during a cyclic test at constant vertical load and variable tilting
angle ϑ (b).

2.2 Numerical Homogeneization Analyses

As is well known, it is quite common today to investigate the macro-
scopic mechanical behaviour of the specimen, employing micro-structural
approaches, in which the interaction among the single grains is numeri-
cally reproduced. Analogously, in the case of interface problems of large
dimensions like those here accounted for, by changing abruptly the scale,
to better understand the mechanical processes governing the problem, nu-
merical analyses can be performed. These latter, owing to the change in
scale, allow of being employed as heuristic tools but even to calibrate the
constitutive parameters introduced for the macroelement constitutive rela-
tionships discussed in the following section. For the sake of completeness,
four different approaches will be treated: (i) a very simple contact spring
model to describe the uplift phenomenon, (ii) limit analysis to determine
the interaction domain for the rigid cross section of either piles or pipes,
(iii) finite and (iv) discrete element numerical analyses to describe the de-
pendence of the interaction domain shape on geometrical and stratigraphic
conditions.

Contact springs models are usually employed to demonstrate that the in-
teraction problem (in case of a rigid shallow footing) is mainly dominated
by the unilaterality of the local contact. Indeed, if bilateral elastic contact
springs are assumed to locally describe the interaction between the rigid
body and the underlying soil stratum, and an ideal loading test is per-
formed, during which the vertical load is kept constant and the tilting angle
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Figure 7. Laboratory small scale experimental test results after di Prisco
et al. (2003a): failure mechanisms concerning a rigid shallow strip foot-
ing under a vertical centred load on an unreinforced dense sand stratum
(a) and on a reinforced dense sand stratum (b) according to the geometry
schematically outlined in Fig. 7c.

ϑ is monotonically increased, a linear relationship between the overturning
moment M and ϑ can be easily proven to be obtained (straight line KR in-
clined of Fig. 8a) and a maximum value for M is not achieved. In contrast,
if elastic unilateral springs are introduced to describe the local contact, the
response is still linear until M = M0 is reached (that is until all the springs
are under compression - here ϑ0 stands for the tilting angle corresponding
with the initiation of the detachment), whereas subsequently linearity is lost
and an ultimate overturningmoment is asymptotically approached. Finally,
if the springs are also assumed to be elasto-plastic and an appropriate value
to their ultimate load is assigned, asymptotically value M2 of Fig. 8a is ap-
proached. By numerically performing different tests at different V constant
values, even the interaction domain in the M−V plane can be obtained and
this satisfactorily matches that experimentally determined and empirically
described by means of the function given in (1). It is worth noting that in
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case of a rigid substratum the boundary of the interaction domain of Fig. 8b
simply reduces to a straight line passing through the origin.
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Figure 8. Simplified schematic interpretation of the mechanical response of
the rigid footing subject to an overturning moment under constant vertical
load: linear elastic, non-linear elastic and elastoplastic linear mechanical
response (a), interaction domain in the M − V plane obtained by using a
generalised spring model of interaction and relative comparison with the
locus defined by Nova-Montrasio (b).

To determine the interaction domain shape, limit analysis theory can be
even employed, for instance, in particular in case of piles/pipes buried within
clays. These approaches are commonly employed, for instance, (Randolph
and Houlsby, 1984, di Prisco et al., 2003a), in case of piles horizontally
loaded. The problem can be easily dealt with when undrained conditions
are considered. For instance, in Fig. 9 the dependence of the interaction do-
main shape on the relative depth Z/D of a pipe of diameter D is plotted. At
increasing values of Z/D the interaction domain tends to become progres-
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sively more centred with respect to the H axis (Fig. 1b) and progressively
reduces to a circle.

The experimental results employed to determine the interaction domain
cited above can be also numerically reproduced by performing finite ele-
ment analyses in which both the mechanical behaviour of the soil and the
local contact between the rigid footing and the underlying soil are satis-
factorily simulated. Both these aspects are essential: the former naturally
for conveniently reproducing the mechanical response of the system in the
zone of the interaction domain where penetration mechanisms dominate,
the latter when the values of the vertical loads are quite small and interface
mechanisms govern the response of the system. As far as the penetration
mechanisms are concerned, in particular, in case the analyst decides to im-
plement an elasto-perfectly plastic constitutive relationship for the soil into
the numerical code, the use of a non-associated flow rule is essential for cor-
rectly reproducing the system response, and not only its stiffness but even its
strength. In case of loose sands, for instance, the use of non-associativeness,
jointly to the large deformability of the material, inhibits the formation of a
standard failure mechanism and allows the activation of a punching mech-
anism. As will be clarified in a following section and as was first suggested
by Cremer et al. (2001) and Cremer et al. (2002), FEM analysis results can
be therefore fruitfully employed to calibrate the constitutive parameters of
constitutive relationships for the macro-element.

Analogously, even Distinct Element codes (Cundall and Strack, 1979)
have been recently employed (Calvetti et al., 2004) to highlight the main
features of very common soil–structure interaction problems. For instance,
with reference to the cross section of a pipe embedded into a homogeneous
loose sand stratum, the interaction domains for different values of ζ = Z/D
are illustrated in Fig. 10. Once again, as ζ increases, the domain widens
progressively and tends to translate. In Fig. 10b, the numerical prototype
and the corresponding failure mechanisms are also reported, respectively.

2.3 Elasto-Plastic Approaches

Once the generalised stresses and strains are defined, in order to conceive
a homogenised constitutive relationship, capable of accounting for the non-
linearities experimentally and numerically discussed above, and in particu-
lar the collapse of the system, the simplest choice is to employ an elasto-
perfectly plastic relationship, that is to define an appropriate yield/failure
locus F (Q,αF ) = 0, and a plastic potential G(Q,αG) = 0, where vector αF

and αG stand for two sets of parameters describing, respectively, the shape
of the failure locus and of the plastic potential. Within the failure/yield
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Figure 9. Dependence on relative depth Z/D of the interaction domain
relative to a rigid cross section of a pipe embedded within a homogeneous
clay stratum under undrained conditions (γsat stands for the saturated soil
unit volume weight), evaluated by employing the kinematic method of the
limit analysis, after di Prisco et al. (2004).

locus the mechanical behaviour is assumed to be elastic and uncoupled and
coupling is assumed to be associated exclusively with ultimate conditions.
Either DEM or FEM codes can thus be employed to evaluate the direction
of the irreversible generalised strain vector at failure. An example of super-
imposition of generalised strain rate vectors at failure on the corresponding
interaction domains is given in Fig. 10a. It is evident that for these sys-
tems associativeness cannot be accepted. Analogously, in case of shallow
footings, if an associated flow rule was accepted when sliding mechanisms
are activated, that is when in the plane M = 0 the straight line H/V = μ
is approached, a mechanical/meaningless negative (i.e. upwards directed)
unlimited vertical displacement would occurr.
An example of an elasto-perfectly plastic constitutive relationship conceived
for describing the response of rigid footings under seismic actions is in
Paolucci (1997), whereas in Cocchetti et al. (2009) an application to pipelines
across landslides can be found. In particular, in this latter the calibration of
the interaction constitutive relationship is described and even the influence
of the slope inclination, along which the pipeline is positioned, on the in-
teraction domain shape is accounted for (Fig. 11). The stress paths plotted
in Fig. 11b are obtained by performing FEM numerical analyses (Cocchetti
et al., 2009) under generalised strain controlled conditions: it is evident that
two of them get the interaction domain and belong to it before reaching the
ultimate conditions.
A more sophisticated way of describing the mechanical behaviour of the
rigid shallow footing under monotonously increasing loading is to conceive
in generalised stresses a strain hardening elasto-plastic constitutive model.
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(a)

(b)

Figure 10. Dependence on relative depth Z/D of the interaction domain
related to the rigid cross section of a pipe embedded into a homogeneous
loose sand stratum, evaluated by employing a DEM code, after Calvetti
et al. (2004) (a); relative DEM specimen and failure mechanisms corre-
sponding with upwards and leftwards imposed displacements (b).

Both the loading function f and the plastic potential g, in this case, can be
conveniently defined by assuming their shape to be coincident with that of
F and G: the failure locus is, therefore, a special yield locus for which the
hardening parameter Vc = Vmax (Nova and Montrasio, 1991) where Vmax is
the footing bearing capacity. The development of plastic strains causes an
increment in Vc, according to an appropriate hardening rule definition. For
instance Nova and Montrasio (1991) proposed for a strip shallow footing:

dVc =

(
1− Vc

Vmax

)
R0

Vmax
(dvp + α |dup|+ γB |dϑp|) (3)

where B stands for the footing width, R0 is a constitutive parameter gov-
erning the stiffness of the system that can be easily calibrated when centred
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Figure 11. Dependence on the slope inclination i of the interaction domain
shape, evaluated by employing a FEM code for a rigid cross section of a pipe
embedded into a homogeneous loose sand stratum, after Cocchetti et al.
(2009): schematic representation of the problem (a), interaction domain
and stress path in the H − V plane.

vertical loads are applied, the superscript index p stands for plastic, whereas
α and γ are constitutive parameters influencing the system response when
either inclined or eccentric loads are applied. In a non-dimensional plane
(by employing the non-dimensional variables introduced in Fig. 5) and by
defining ρc = Vc/Vmax, such a hardening can be represented as in Fig. 12. As
it has been clearly demonstrated by many authors, such a simple approach
allows of satisfactorily reproducing the mechanical response of shallow foot-
ings under any monotonically increasing load and this statement can be
supported by the comparisons with either FEM analyses or experimental
test results.
Eq. (3) implies necessarily an increase in the size of the yield locus and,
as a consequence, always a positive hardening. In contrast, some authors
have also proposed more complex hardening rules capable of accounting for
even a reduction in the yield function size and, consequently, of simulating
a softening regime (Gottardi et al., 1999; Martin, 1994; Cassidy et al., 2002;
Nova et al., 2008). Instead, very recently Hodder and Cassidy (2010) with
regard to normally consolidated clays, whereas di Prisco and Vecchiotti
(2009) with regard to loose sands, modified the aformentioned hardening
rules to reproduce the mechanical interaction between rigid bodies and large
deformable soils, that is to account for large displacements. In particular,
di Prisco and Vecchiotti (2009) suggested for the one dimensional case the
following:

dVc =

〈
1− Vc

Vmax

〉
R0 dvp + ᾱ dvp (4)

where ᾱ is an additional constitutive parameter and brackets impose to
consider only the positive branch of (1− Vc

Vmax

).
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Figure 12. Representation of the isotropic hardening in the non-
dimensional plane h− ξ: the yield locus evolution.

To define more precisely the loading function shape, in the 90s some au-
thors (Gottardi et al., 1999; Butterfield and Gottardi, 2003) performed the
so-called swipe-tests on rigid shallow footings, during which vertical dis-
placements are inhibited, whilst horizontal/rotational displacement compo-
nents are increased and the remaining load (rotational/horizontal) is kept
constant.

An extension of this theory to visco-plasticity, according to Perzyna’s
approach (Perzyna, 1963) (this latter already discussed within a previous
chapter of this volume), was recently suggested by di Prisco and Vecchiotti
(2006) to numerically reproduce the impact of rigid boulders on granular
materials. In this case, the dynamic interaction problem is approached
by accounting for both the boulder mass and inertial actions within the
deformable sand stratum. This is obtained through: (i) a suitable definition
for the viscous nucleus, (ii) the definition, according to a radial mapping, of
a sort of overstress (in Fig. 13 indicated with term distance between points
P and I representing, respectively, the current generalised state of stress and
the corresponding image point belonging to the current yield locus). As was
already observed in a previous chapter, according to this theory, the point
P (Fig. 13) can belong to a domain external to both the yield function and
the interaction domain and this implies that during the evolution of time,
the load applied by the boulder to the soil can be much larger than that
can be statically reached.
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3 Shallow Foundations Under Cyclic Loading

The two previously defined approaches (the elasto-perfectly plastic and the
strain hardening elasto-plastic), have been demonstrated to be capable of re-
producing quite satisfactorily the mechanical response of this type of struc-
tures under monotonic tests, but, as it can be reasonably expected, they fail
totally in simulating the experimental evidence when cyclic tests are taken
into account. To highlight the cyclic interaction between shallow founda-
tions and the underlying soil, in the last two decades, two different classes
of experimental tests have been prevalent: (i) symmetric load controlled
cyclic tests (in this case the cycles are symmetric with respect to the V
axis) (Pedretti, 1998; Shirato et al., 2007) and (ii) asymmetric load con-
trolled tests (in this second case the cyclic perturbation induces a loading
oscillation about an image point in the generalised stress space which does
not belong to the V axis; di Prisco et al. (2003c)). The first class of tests
causes with time an accumulation of vertical displacements that progres-
sively stabilise, reaching a sort of plastic adaptation regime. The second
class of tests, on the other hand, induces a marked accumulation both of
vertical and horizontal/rotational displacements.
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Figure 13. Definition of distance d according to radial mapping in the
non-dimensional h− ξ plane.

3.1 Experimental Evidence

As in the previous section, to summarise the experimental test results avail-
able in the literature, not really very numerous, here some summarising
statements are listed:

1. Under cyclic loading, the system dissipates energy and, in general,
accumulates irreversible generalised strains;
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2. When the underlying soil stratum is sufficiently rigid i.e. dense sand,
during tests performed by controlling the rotation angle, by keeping
constant the vertical load and recording the horizontal one, the cycles
in the M − ϑ plane assume, in case of large values of tilting, a typical
backbone shape (Fig. 14a). This response is mainly associated with
the development of the uplift phenomenon dominating the response
of the system in case of dense but not of loose sand strata (Fig. 14b).

3. In contrast, if during each cycle the ultimate load is not reached (ob-
viously in this case the generalised stress path can be imposed under
load controlled conditions) (Fig. 15), in case of both loose and dense
sand strata, the mechanical response during the unloading phase of
each cycle is characterised by a monotonic decrease in the rotational
stiffness (Fig. 15a and Fig. 15b).
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Figure 14. Experimental data concerning a rigid square shallow foundation
cyclically tilted: (a) dense sand, (b) loose sand (PWRI, 2005).

4. The coupling among tilting/horizontal and vertical displacements is
very severe when loose sand strata are tested but are even evident for
dense sand strata (Fig. 15d).

5. If the experimental mechanical response of rigid footings (in case of
symmetric loading paths) is interpreted by employing the well-known
concepts of secant stiffness K and damping factor η, (Fig. 16), a clear
decay in K and, at the same time, an increase in η are evident at
increasing values of either rocking or horizontal displacements. An
example of these relations, obtained by processing experimental data
from Pedretti (1998) and the PWRI (2005), is illustrated in Fig. 16
with reference to dense sands. Stiffness has been determined from
the experimental loops, as the slope of the line joining the extreme
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Figure 15. Experimental data concerning a rectangular shallow founda-
tion under load controlled cyclic tests, after Pedretti (1998): (a) rocking
moment versus rotation angle (dense sand stratum), (b) rocking moment
versus rotation angle (loose sand stratum), (c) loading history versus time,
(d) vertical settlements versus time for both dense (black line) and loose
sand stratum (gray line).

points of the M − ϑ and H − u curves, respectively. Stiffness K is
normalised as well with respect to the initial small strain stiffness
K0. In the same plots numerical simulations obtained by employing
the macro-element concept are also reported but these numerical data
will be commented on the following. It is worth noting that even for
relatively small values of foundation rocking, for instance 1 mrad, the
reduction in foundation stiffness, depending on soil relative density,
ranges between about 40% and 60%. The equivalent damping ratio
η in the rocking mode, computed as the ratio between the dissipated
energy D̂ (area of the hysteresis loop) and the stored elastic energy
ΔW , is also plotted in the same figures. For rocking values up to
1 mrad the η value ranges from 5% to 10%, while it significantly
increases for larger rocking angles, up to 20% for dense sands and
30% for medium dense sands. When the rocking angle imposed is
sufficiently large, the phenomenon of the uplift dominates the response
of the system and η stops evolving.

6. When a very large number of cycles is imposed, the accumulation
rate of irreversible settlements progressively decreases: usually a sort
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of stabilisation takes place, at least when no damage phenomenon is
present. When the generalised stress path is symmetric, only verti-
cal displacements accumulate with the number of cycles, but when
either the initial generalised stress state or the generalised stress path
is asymmetric, the ratcheting phenomenon involves not only vertical
settlements but also either horizontal displacements or rocking angles.
In order to exemplify this aspect, in Fig. 17 some experimental test
results from di Prisco et al. (2003a) concerning small scale experimen-
tal tests on a rigid shallow footing placed on a uniform loose sand
stratum are illustrated. In particular, in Fig. 17a a schematic view
of the generalised stress path imposed (the tilting moment is in this
case nil) is reported, whereas in Fig. 17b the loops in the H −u plane
are plotted. The accumulation of generalised strains is observed to
be essentially a function of (i) the generalised stress path cyclically
imposed, (ii) the amplitude of the cycles and (iii) the image point
defined in the generalised stress space around which the loading path
is imposed and in particular of its position with respect to the failure
locus (full line in Fig. 18a). As is evident from Fig. 18, where all the
results concern the same amplitude and only the position of cycles
in the H − V plane is varied, when the image point defined above
approaches the limit locus (and this is particularly true for points 1
and 4 characterised by a large obliquity H/V ), the accumulation rate
increases severely.

3.2 Constitutive Modelling

A way of overcoming the limitations of the previously defined class of mod-
els, analogously to what is done with reference to standard constitutive
relationships for the soil’s REV, is to conceive either bounding surface con-
stitutive relationships or multi-mechanism plastic approaches. For instance,
the constitutive model of Nova and Montrasio (1991) cited here above was
modified (di Prisco et al., 1998), by introducing within the yield locus a
subloading surface (Fig. 19) and the evolution of the inner locus is con-
ceived so that it cannot intersect the ‘bounding surface’. A convenient
mapping rule allows of relating any point within the yield locus to an ap-
propriate point on it. The plastic multiplier is evaluated on the bounding
surface and suitably scaled according to the distance between the current
point Pi and the corresponding image point belonging to the bounding sur-
face Ii (Fig. 19). When the distance reduces to zero, the scaling function
converges towards unity. The inner locus is therefore exclusively employed
to define the elastic domain and to determine the image point Ii. In this
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Figure 16. (a) Normalised rocking, (b) translational stiffness, (c) damping
factor for a dense sand (Dr = 90%) (after Paolucci et al. (2007) at increas-
ing values of rocking angle and horizontal displacement, respectively) and
(d) sketch for the evaluation of rocking/traslational stiffness and damping
factor.

way, both the occurrence of permanent generalised strains, even when the
stress point is within what is usually considered a purely elastic region, and
the accumulation of plastic distortions during cyclic or transient loading can
be simulated (di Prisco et al., 2003a; di Prisco et al., 2003b). The model
becomes inevitably more complex and the determination of further param-
eters is necessary. An example of validation of the model concerning the
behaviour of a plinth, 1m wide, founded on a dense sand stratum, subject to
a constant vertical load and to both cyclic horizontal load and overturning
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Figure 17. Experimental test results (after di Prisco et al. (2002)) obtained
by performing V constant test and by cyclically changing H : (a) generalised
stress path, (b) horizontal load versus horizontal displacement.
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Figure 18. Experimental test results (after di Prisco et al. (2003c) obtained
by performing V constant tests and by cyclically changing H : (a) image
point around which the cyclic generalised stress path is imposed, (b) vertical
and (c) horizontal displacements versus number of cycles n.

moment (experimental data after Pedretti (1998)) is in Fig. 20. Loads were
applied at low frequency, so that dynamic effects could be neglected. Both
the overturningmoment and the horizontal force are varied while their ratio
is kept constant. It is evident that this constitutive approach is suitable for
capturing in a satisfactory way the essential features of the experimental be-



www.manaraa.com

Cyc. Mech. Response of Rigid Bodies Inter. With Sand Strata 385

5

\

,��01��	0�
12
,��

��1����`
21���
�	���

}����	���0�	
0�
12

�

�
��

}�

Figure 19. Schematic representation of both the sub-loading function and
the bounding surface.

haviour of the system and this conclusion regards both dense and loose sand
strata, at least in case of symmetric cycles applied on symmetric systems,
that is for rigid footings placed on horizontal strata with either a homo-
geneous stratigraphy or a heterogeneous stratigraphy with layers stratified
normally to the vertical direction. This class of models can be also
employed to rapidly derive interesting heuristic information, that obviously
have to be experimentally confirmed. For instance, the experimental data
plotted in Fig. 16, as was previously mentioned, were obtained by impos-
ing generalised stress paths at different initial vertical loads V , similar to
that schematically plotted in Fig. 21a: either H or M are cyclically varied
(in particular, in both the experimental campaigns previously cited, both
variables are varied simultaneously and ratio M/H is kept constant), ac-
cording to progressively increasing amplitudes (Fig. 21b). The large scatter
in the experimental results previously illustrated can be therefore theoreti-
cally justified throughout the use of the macroelement approach. In Fig. 22
different K/K0 curves, obtained by employing the aforementioned bound-
ing surface elasto-plastic model, are collected in relation to two values of
relative densities for different values of V . It is evident that at decreasing
values of V/Vmax, where Vmax stands for the bearing capacity of the footing,
the decay in K/K0 becomes more rapid whilst the increase in damping less
rapid.

Unfortunately, the previously mentioned class of models fails in reproducing
three very important aspects of the mechanical response of rigid shallow
foundations under repeated loading: (i) the large settlements induced by
the first unloading, (ii) the reduction in stiffness during the first phase of the
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Figure 20. Comparison of measured (dotted lines) and calculated (full
lines) displacements of a real scale foundation placed on a dense sand stra-
tum under cyclic horizontal loading and overturning moment and constant
vertical load (experimental data after Pedretti (1998)); a) horizontal load
versus horizontal displacements; b) overturning moment versus rotation; c)
accumulated vertical settlement versus time.
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Figure 21. Constant vertical load path (a) and loading history with sym-
metric cycles of increasing amplitude (b).

unloading when the footing is previously largely tilted, (iii) the ratcheting
when asymmetric loading paths are imposed.

In order to clarify the first statement, in Fig. 22 the numerical results (curves
MACRO) obtained by employing the previously cited bounding surface con-
stitutive model (di Prisco et al., 2002) are compared with those from small
strain/displacement finite element numerical analyses. In particular, the
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Figure 22. Influence of the V/Vmax ratio on the dependence of (a, b) the
secant rotational stiffness Kθ and of (c,d) the damping factor for dense and
medium dense sand on the rocking angle, respectively.

curves MC are obtained by employing the FEM commercial code Tochnog
(FEAT, 2004) and by assuming for the soil an elasto-perfectly plastic Mohr–
Coulomb constitutive model, and the curves DP, by assigning to the soil
an anisotropic strain-hardening constitutive relationship (di Prisco et al.,
1993). These results are for a rigid shallow strip foundation placed on
a very loose sand stratum initially subjected to a vertical load V which
is kept constant while the horizontal load is cyclically varied. It is evident
that the numerical data obtained by employing the macro-element approach
match the FEM numerical analyses results quite well during all the succes-
sive cycles but not during the first one, in particular if the DP curve is
taken as target. This limit mainly derives from the isotropic hardening for
the bounding surface. In fact, when the load is rightward directed, the irre-
versible strains take place mainly close to the right corner of the foundation,
whilst at the opposite corner when the load is inclined leftward: therefore,
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Figure 23. Comparison among numerical data obtained by employing the
macro-element approach and FEM numerical analyses: (a), horizontal load
versus horizontal footing displacements obtained by using a FEM code (MC
constitutive model), (b) (DP constitutive model) and (c) di Prisco et al.
(2006) macroelement constitutive relationship.

the two associated plastic mechanisms can be assumed, at first approxi-
mation, to be independent and the same can be inferred when overturning
moments are applied.

To capture this aspect, as already suggested by Cremer et al. (2001), the
hardening of the plastic surface should be anisotropic. These authors sug-
gested, by following the theoretical approach conceived for cohesive strata
by Salençon and Pecker (1995a,b), two different expressions for the failure
locus F and for the yield locus f respectively:

F =

(
H ′

ã× V ′ c̃ × (1− V ′)
d̃

)2

+

(
M ′

b̃× V ′ẽ × (1− V ′)
f̃

)2

− 1 = 0 (5)
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Figure 24. Schematic representation both of the failure locus and of the
evolving yield function according to the approach of Salençon and Pecker
(1995a,b), in the H ′ − V ′ (a) and in the H ′ −M ′ plane (b), respectively.

f =

(
H ′ − α̃Γγ

H

ρ̃Γγ
H

)2

+

(
M ′ − β̃Γγ

M

ρ̃Γγ
M

)2

− 1 = 0 (6)

where V ′, H ′ and M ′ stand for normalised non-dimensional variables such
as those (ξ, h and m) introduced by Nova and Montrasio (1991), whereas
ã, b̃, c̃, d̃, ẽ and f̃ are constitutive parameters; ρ̃, α̃ and β̃ are hardening
variables, the first defining the isotropic hardening and the other two the
kinematic hardening of the yield function, respectively, whereas:

Γγ ≡
⎛⎝ 0

Γγ
H

Γγ
M

⎞⎠ ≡

⎛⎜⎝ 0

ãV ′c̃ (γ̃ − V ′)
d̃

b̃V ′ẽ (γ̃ − V ′)
f̃

⎞⎟⎠ (7)

γ̃ = χ+ (1− χ) (ρ̃+ τ̃)

τ̃ =

√
α̃2 + β̃2

For γ̃ = ρ̃ = χ = 1, f degenerates into the failure locus F . When the yield
function isotropically hardens and a centred vertical load is applied, ρ̃ = χ
and τ̃ = 0. These quite complex analytical definitions provide a convenient
description for the anisotropic hardening, as is schematised in Fig. 24, both
in the H ′ − V ′ and H ′ −M ′ planes. An interesting application of this class
of models has been recently published by Grange et al. (2007a), Grange
et al. (2007b), Grange et al. (2008) and Grange et al. (2009). These authors
employed a suitable evolution rule for β̃, a linear constraint between ˙̃ρ and
˙̃τ ( ˙̃ρ = k ˙̃τ) and, to satisfactorily match the experimental results, parameter
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Figure 25. Asymmetric generalised stress path; schematic representation
of the evolution of the yield function and of the failure locus for an isotropic
strain hardening elasto-plastic model (a), mechanical response which could
be obtained if an isotropic strain-hardening elasto-plastic model was em-
ployed (b), mechanical response is obtained by employing the bounding
surface elastoplastic model (c).

k was abruptly reduced. Unfortunately this choice necessarily implies the
effect of previous loading histories to be lost.

The second aspect previously cited, concerning the rotational stiffness of
the system during unloading after getting large values of the tilting angle,
is instead more important and can be clarified by discussing once more the
experimental results obtained on large scale models at the Public Works
Research Institute (PWRI, 2005; Shirato et al., 2007) already plotted in
Fig. 14. These experimental data were obtained by imposing to a prototype
rigid structure, placed on a caisson filled with sand, a horizontal cycli-
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cally varying displacement. During the cyclic phase, the footing is therefore
loaded by a constant vertical load due to the steel frame weight while both
overturning moment and horizontal force cyclically vary. As the test is
conducted under displacement controlled conditions, even the reduction in
generalised loads can be observed. As already commented, when the soil
density is sufficiently high, during the unloading a typical ‘s’ shaped trend
is observed. As was already mentioned, this mechanical response during
unloading in the case of dense sand is essentially due to the uplift of the
foundation: the reduction of the contact surface between the footing and
the soil due to the detachment between the two materials generates a sort
of damage of the system that could be described coherently for instance
by introducing an elasto-plastic coupling. Some recent efforts in this direc-
tion, although not totally satisfying, are in Cremer et al. (2002), Shirato
et al. (2007), Paolucci et al. (2008), Grange et al. (2008) and Grange et al.
(2009). In particular, Paolucci et al. (2008) suggested a sort of pseudo-
empirical damage rule, whereas Chatzigogos and Figini (2008) suggests a
sort of non-linear damaging elasticity accounting for the detachment.

Finally, as far as the third issue listed above is concerned, to demonstrate
that standard bounding-surface-plasticity and anisotropic strain harden-
ing constitutive models severely overestimate the phenomenon of ratch-
eting when asymmetric loading paths are imposed, consider Fig. 25. In
Fig. 25b and c respectively, the typical mechanical responses to the gener-
alised asymmetric stress path of Fig. 25a, we could obtain by means of a
standard isotropic hardening elastoplastic constitutive model and a bound-
ing surface model, are illustrated. In case of elastic isotropic strain hard-
ening (Fig. 25b), all the successive unloading/reloading do not cause the
accumulation of any irreversible displacement, whereas the bounding sur-
face approach cannot generate any loop, so that the ratcheting phenomenon
is too marked. To reduce the accumulation of the irreversible generalised
strains and to reproduce, from both a qualitative and quantitative point
of view, the experimental evidence, already commented on wih reference to
Fig. 17 and Fig. 18, the previously cited bounding surfacemodel was further
modified by the author by introducing a sort of artificialmemory rotating in
the ξ− h−m space and distance between Ii and Pi of Fig. 19 was suitably
redefined. Nevertheless, so far there has not been, in the literature, any
convincing constitutive relationship, based on the macroelement approach,
capable of quantitatively reproducing either the progressive stabilisation, or
the collapse, induced by cyclic loading.
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List of Symbols

p plastic component §2.3
a = L/2 §2
ã constitutive parameter §3.2
b characteristic length of the plastic hinge §2
b̃ constitutive parameter §3.2
B footing width §2
c̃ constitutive parameter §3.2
d̃ constitutive parameter §3.2
D diameter of the pipe §2.2
D̂ dissipated energy §3.1
D incremental constitutive matrix §2
Dr relative density §3.1
ẽ constitutive parameter §3.2
f yield locus §2.3, §3.2
f̃ constitutive parameter §3.2
F failure locus §2, §3.2
g plastic potential in strain hardening elasto-plastic ap-

proach
§2.3

G plastic potential in elasto-prefectly plastic approach §2.3
h = H/μVmax §2.1
H horizontal load §2, §3
H ′ normalised non-dimensional horizontal load §3.2
i slope inclination §2.3
Ii image point belonging to the bounding surface §3.2
k parameter §3.2
K secant stiffness §3.1
K0 initial small strain stiffness §3.1
KR elastic stiffness §2.2
Kθ secant rotational stiffness §3.2
L length of the beam §2.3
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m = M/ψBVmax §2.1
M overturning moment §2, §3
M ′ normalised non-dimensional overturning moment §3.2
MU ultimate moment §2
M0 moment at base of foundation when uplift of footing edge

occurs
§2.2

M1 moment when subgrade reaction intensity at foundation
edge has reached the upper limit

§2.2

M2 moment when the distribution of subgrade reaction in-
tensity is rectangular

§2.2

n number of cycles §3.2
N longitudinal action §2
Pi current state of stress point §3.2
PU ultimate load §2
q vector of generalised strain §2
qp accumulated generalised plastic strain §2
qy upper limit of subgrade reaction intensity §2.2
Q vector of generalised stress §2
R0 constitutive parameter §2.3
T torsional component §2
u horizontal displacement §2, §3
v vertical displacement §2, §3
V vertical load §2, §3
V ′ normalised non-dimensional vertical load §3.2
Vc hardening parameter §2.3
Vmax footing bearing capacity §2, §3
Z depth §2
α constitutive parameter §2.3
α̃ hardening variable §3.2
ᾱ constitutive parameter §2.3
αF vector describing the shape of the failure locus §2.3
αG vector describing the plastic potential §2.3
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β parameter §2.1
β̃ hardening variable §3.2
γ constitutive parameter §2.3
γ̃ = χ+ (1− χ) (ρ̃+ τ̃ ) §3.2
γsat saturated soil unit volume weight §2.2
Γγ
H = ãV ′c̃ (γ̃ − V ′)

d̃ §3.2
Γγ
M = b̃V ′ẽ (γ̃ − V ′)

f̃ §3.2
δ maximum vertical displacement of the beam §2
ΔW stored elastic energy §3.1
ζ = Z/D relative depth §2.2
η damping factor §3.1
ϑ foundation rotation §2, §3
ϑ0 tilting angle corresponding with the initiation of the de-

tachment
§2.2

μ parameter §2.1, §2.3
ξ = V/Vmax §2.1
ρ̃ hardening variable §3.2
ρc = Vc/Vmax §2.3
τ̃ =

√
α̃2 + β̃2 §3.2

χ hardening variable §3.2
ψ parameter §2.1
ψ vector describing the previous history of the system §2
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1 Macroelement Models

Numerical modelling using a full finite element or finite difference analysis
may be ultimately necessary but may be a heavy-handed way of seeking in-
sight into some aspects of a problem of geotechnical behaviour. Theoretical
modelling may only be possible for rather restricted problems. Macroele-
ment modelling may be a helpful intermediate way of introducing some
realistic geotechnical nonlinearity in order, for example, to compare differ-
ent constitutive possibilities or perhaps just to provide a rapid ‘order-of-
magnitude’ estimate of response against which the results of more extensive
numerical modelling—or physical modelling—can be compared. Equally,
physical or numerical modelling may itself provide clues concerning mecha-
nisms of system response which may suggest ways in which simple macroele-
ment models might be devised. It will be seen that this has indeed been
the route for the development of some of the macroelement models outlined
here. We will describe three examples of analysis of soil-structure interac-
tion using a macroelement approach. Two of these are closely related - the
lateral deflection of a pile or pipeline or tunnel as the surrounding ground
moves. The third is a dynamic analysis of a gravity retaining wall.

2 Soil-Structure Interaction

Soil-structure interaction is one of those interface topics which requires a
holistic approach to the analysis or modelling. It is not possible to consider
the structural and geotechnical elements of the problem separately because
the system response will certainly depend on some combination of proper-
ties of both the soil and the structure. If the ground and the structure are
both behaving elastically then simple configurations lead to exact analyses
and results can be presented in terms of dimensionless groups which sim-
ply describe relative stiffnesses of ground and structure. For example, the
response of a laterally loaded pile is described by Muir Wood (2004). The
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resistance of the soil as the pile moves is described using a subgrade reaction
model with the relative displacement of pile and ground generating resisting
stress through a series of linear Winkler springs, with no allowance for the
continuous nature of the enveloping ground.

In reality, however, although the structural element may behave elasti-
cally, it is extremely unlikely that the behaviour of the soil will be elastic
except for extremely small deformations. So we would like to be able to
extend our analysis to include non-linearity of the soil-structure interaction
while still—if at all possible—retaining the possibility of displaying the re-
sults as economically as possible, making use of appropriate dimensionless
groups.

The situation is often worse than this implies because we may not ac-
tually know anything about the nonlinear stiffness of the soil, and yet this
will be crucial in deriving dimensionless groups which encapsulate sufficient
detail of the parametric description of the problem. In that case we have to
make informed guesses. Our expectation is that there may well be both a
stiffness element to the ground-soil interaction but also a limiting interac-
tive load. To propose a simplification of this interaction relationship is not
particularly original but what is explored here is a way in which even non-
linear interaction can be capable of analytical solution and presentation in
terms of nondimensional groups, thus throwing light both on the parameters
which are important, and on the character of the system response.

Two related problems will be presented: the behaviour of a flexible pile
in translating ground; and the effect of a fault displacement on a buried
pipeline or tunnel. The geometries considered are inevitably simplistic. (A
more extensive discussion of accessible soil-structure interaction analyses is
given by Muir Wood (2004).)

3 Pile in Displacing Ground

Situations in which both the structural and the soil materials can be de-
scribed as linear elastic lend themselves to closed-form analysis. However,
the behaviour of soils is at best linear elastic only to very small shear strains
and the subsequent nonlinearity will certainly have an influence on the na-
ture of the soil-structure interaction. In this section we will investigate some
aspects of the structural consequences of slow movement of ground past a
pile. We will model the interaction of the pile with the soil by means of
a series of nonlinear springs—and explore the effects of this more realistic
description.

The stimulus for performing this analysis was provided by a prototype
problem in which a landfill through which a piled structure had been con-
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Figure 1. Pile loaded by translating ground.

structed was known to be sliding slowly but inexorably down the shallow
slope of its underlying rock surface. There are two major unknowns: the
profile of lateral displacement within the fill is not known; and the nature
of the (nonlinear) fill-structure interaction is not known. It is nevertheless
possible to introduce some fairly rational descriptions of these two aspects
of the interaction and then perform parametric studies. To put it further
in context, the structural interest was to understand the extent to which
knowledge of the lateral displacement of the piles at the ‘ground’ surface
could be used to characterise the maximum moment generated in the piles.

The analysis of active or passive lateral loading of piles using a set of
subgrade reaction springs is not novel (Reese and Matlock, 1956; Poulos,
1973) but such analyses have usually assumed that the soil is elastic, or
piecewise linear (though Poulos introduces the possibility of a limiting soil
resistance). The problem to be analysed here is approached in a different
way.

The piles are of length �, and flexural rigidity EI, and are fixed at their
base, so that both rotation and displacement are prevented (Fig. 1). A
dimensionless coordinate η = z/� defines position on the pile with η = 0 at
the base and η = 1 at the ground surface. The pile has no restraint at the
top, η = 1 and, for the purposes of this analysis, it is assumed that the only
lateral loading is provided by the moving fill.

We do not know the detail of the profile of ground movement so we give
it a general profile:

δ = δoη
α (1)

where δo is the movement at the ground surface, at η = 1, and α is a
parameter which characterises the profile of movement (Fig. 2). A value
of α = 1 implies linear variation of movement with depth; α > 1 implies
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Figure 2. Profiles of ground displacement.
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Figure 3. Development of pressure on pile as result of relative movement
between pile and ground.

that the movement is more concentrated towards the surface (in principle
α = ∞ implies that movement is everywhere zero except for η = 1); α < 1
implies that the movement is more concentrated towards the base of the
ground (α = 0 implies that the ground is moving as a block with δ = δo at
all depths). It is assumed that the presence of the individual piles does not
influence the ‘free-field’ flow of the ground.

The detail of load generation through relative movement of ground and
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structure is not known—and the fact that the ‘ground’ in this case is actually
landfill does not help. We can make some reasonable propositions. The
ground-structure interaction is likely to be symmetric and dependent only
on the magnitude of the relative movement, the difference between pile
displacement y and ground displacement δ. As relative movement increases
it is expected that the load generated will saturate to some limiting value
characterised by a strength property of the ground. It is assumed that this
strength varies linearly with depth. There will be some description of the
stiffness of the interaction at small relative displacements but the tangential,
incremental stiffness will fall as the limiting strength is approached. An
appropriate expression for the lateral pressure on the pile, as a function of
relative displacement Δ = δ − y could then be (Fig. 3):

K

K∗
= tanh

[
λ

(
Δ

B

)]
= tanh [β (ηα − ζ)] (2)

where ζ = y/δo and β = λδo/B. The first part of this equation indicates that
the pressure on the pile depends on the relative movement Δ of pile and soil
(which can be positive or negative) normalised by a typical pile dimension
B related to pile diameter or pile width. The ‘stiffness’ of the pile:ground
relationship is controlled by λ. The mobilised lateral pressure coefficient K
is linked through the nonlinear stiffness with a limiting asymptotic lateral
pressure coefficient K∗ reached as the relative movement increases. Thus λ
and K∗ are subgrade reaction parameters.

The second part of the equation normalises the relative displacement of
pile and ground with the displacement δo of the ground at the surface, as in
(1). That then leads to the dimensionless group β = λδo/B which combines
information about the stiffness of the pile-ground response, λ, with a ratio
of length parameters: ground movement at the free surface, δo and typical
pile dimension, B.

The earth pressure coefficient K is applied to the vertical stress γ(�− z)
at any depth down the pile in order to calculate the horizontal stress on the
pile generated by the relative movement between pile and soil.

σh

γ�
= K(1− η) (3)

where γ is an appropriate unit weight for the soil.
For a material with frictional strength the limiting earth pressure coef-

ficient K∗ would be linked with the passive pressure coefficient Kp for the
soil. In a cohesive material the undrained strength, and hence the limit-
ing pressure, might be assumed to be constant over the length of the pile:
this is the assumption made in the next section for a different structural
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configuration. The tanh function is symmetric and will behave identically
whatever the sign of the relative movement between ground and pile. The
initial stiffness of the pile-ground interaction can be presented as a coeffi-
cient of subgrade reaction (stress per unit relative displacement of pile and
ground):

kh =
dσh

dΔ
= λK∗γ

�

B
(1− η) (4)

with the value kho = λK∗γ�/B at the base of the pile (η = 0). The relative
movement required to move halfway to the limiting value (corresponding to
K/K∗ = 1/2) is Δ50 = (B ln 3)/(2λ)=(δo ln 3)/(2β) or

β =
ln 3

2

δo
Δ50

(5)

which provides a potential link between β and other parameters describing
the problem.

We assume that the lateral stress σh acts over a width B related to
the diameter of the pile. Deformation of the pile is then governed by the
dimensionless equation

d4ζ

dη4
=

1− η

χ

K

K∗
=

1− η

χ
tanh [β (ηα − ζ)] (6)

with

χ =
EIδo
�2

1

K∗γ�3B
(7)

The problem is thus controlled by three parameters: α describes the profile
of ground movement; β controls the initial stiffness of interaction; and χ
is the ratio of two moments, one a structural property and the other a
loading characteristic. For a cantilever of length � and flexural rigidity EI
subjected to a tip load which produces a tip displacement δo, and subjected
to no other loading, the root moment is Mr = 3EIδo/�

2. For a cantilever of
length � subjected to lateral pressures over a width d given by the limiting
value of the lateral stress coefficient K = K∗ over the entire length, the root
moment is Mf = K∗γ�3B/6. Thus χ = Mr/18Mf .

The boundary conditions for the cantilever pile shown in Fig. 1 are zero
deflection and slope at the base of the pile (assuming complete fixity at the
base): ζη=0 = [dζ/dη]η=0 = 0; and zero moment and shear force at the top
of the pile [d2ζ/dη2]η=1 = [d3ζ/dη3]η=1 = 0.

The deformation equation (6) is solved to give a profile of normalised
displacement ζ with normalised depth η. The bending moment M within
the pile is given by:

M =
EIδo
�2

d2ζ

dη2
(8)
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Figure 4. Deflected shape of pile for (a) different values of α (β = 1,
χ = 0.05); (b) different values of β (α = 1, χ = 0.05).

and this points the way to normalisation of the bending moments in terms of
relevantmaterial and system parameters. The displacement of the tip of the
pile is an output quantity, ymax = ζη=1δo, which will in general be different
from the ground displacement δo. A cantilever in air whose tip is moved
transversely by a distance ymax develops a rootmomentMair = 3EIymax/�

2

so that the dimensionless group μ1

μ1 =
M

Mair
=

EIδo�
2

3EIymax�2
d2ζ

dη2
=

1

3ζη=1

d2ζ

dη2
(9)

allows us to compare the moments in a pile whose lateral movement is
brought about by the translation of the ground with the maximum (root)
moment in a pile in air given the same movement at the top, and thus allows
us to understand the extent to which interpretation of maximum moment
from the observed displacement of the piles at the ground surface is or is
not unconservative. On the other hand the dimensionless group μ2:

μ2 =
M

Mf
=

6EIδo
K∗γ�5B

d2ζ

dη2
= 6χ

d2ζ

dη2
(10)

normalises the moment with the maximum moment that can be generated
when the soil is slipping past the pile and fully mobilising the resistance
coefficient K∗ over the full length of the pile and thus indicates the progress
of moment mobilisation.

The two parameters, β and χ, both involve the surface movement, δo, of
the ground: parameter β describes the stiffness of the pile-ground interac-
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Figure 5. Deflected shape of pile for different values of χ (α = 1, β = 10).

tion and χ introduces the pile flexibility. For a given pile the ratio:

β

χ
=

ln 3

2

δo
Δ50

�2

EIδo

(
K∗γ�3B

)
=

ln 3

2

K∗γ�5

EI

B

Δ50
(11)

forms a composite parameter which introduces pile flexibility, limiting earth
pressure ratio, and the stiffness of pile-ground interaction. We can inves-
tigate the behaviour of the pile-ground system by varying β and χ both
separately and together. It is therefore helpful to have some baseline values
for the parametric study.

The definition of β introduces both the relative movement Δ50 required
to generate half the limiting load (a key element of the ground-pile inter-
action), and the magnitude of the ground surface movement δo (which is
completely independent of the pile response). Perhaps Δ50 might be about
half the pile diameter—we could in principle perform tests to discover its
value. The ground surface movement is quite unknown but as an order of
magnitude one might suppose it to be of the same order as the pile diam-
eter. Then, for pile diameter B = 0.5 m (≈ 2Δ50), β = 1.1. A reference
value β = 1.0 thus seems reasonable. Stiffer pile-ground interaction (lower
Δ50, more rapid attainment of the limiting pressure) will imply increased β.
An earlier stage in the development of ground movement after installation
of the piles will imply lower δo and hence a decreased value of β.

A reference value of χ can be estimated in the same way. We have
already assumed an order of magnitude of ground movement δo = 0.5 m.
We will suppose that the (solid) piles are of diameter: B = 0.5 m (implying
I = πB4/64 ≈ 0.0031 m4); and that the Young’smodulus for concrete: E =
30 GPa. We also need to choose a pile length: � = 10 m. The unit weight
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Figure 6. Normalised moments in pile for different values of β (α = 1,
χ = 0.05).

of the ground, which drives the development of lateral stress on the pile is:
γ = 10 kN/m

3
; and we might take the limiting lateral pressure coefficient:

K∗ = 2 (corresponding to the Rankine passive pressure ratio Kp for angle
of friction φ′ ≈ 20◦). Then χ = 0.0464. A reference value χ = 0.05 has
been used for parametric studies and the effect of increasing and decreasing
this has been explored over the range 0.0004 to 0.1. The value of χ is very
sensitive to the details of the pile geometry: χ ∝ B3(∝ I/B) and �−5 (see
(7)).

The governing equation (6) is extremely nonlinear but is capable of nu-
merical solution using standard routines. A short program has been written
in MATLAB to apply the solver bvp4c to the fourth order governing differen-
tial equation. Results are shown in plots of dimensionless pile displacement
ζ = y/δo (Figs. 4 and 5) and of dimensionless moment μ1 (Figs. 6, 7) with
dimensionless position on the pile η = z/�.

The effect of varying α is as expected (Fig. 4a): the greater the average
movement of the ground (the lower the value of α) the greater the load on
the pile and the greater the pile movement and root moment. The value
of α is not something over which an engineer has much control, but any
tendency for mass movement of the ground to occur will certainly be very
damaging for any structure getting in the way of the motion. A baseline
value of α = 1, corresponding to linear variation of ground translation with
depth, has been used for most analyses.

The pile displacements and moments are very sensitive to the stiffness of
the interaction between the pile and the ground: the higher the value of β
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Figure 8. Influence of β and χ on (a) maximum deflection and (b) maxi-
mum moment developed in pile.

the larger the displacements and moments (Figs. 4b and 6). However, there
is interaction between the effects of changing β and χ, which is dependent
on the pile stiffness. With a lower value of χ = 0.002, the tip deflection of
the pile is hardly affected by the value of β for β > 1.0 although the greater
curvature at the toe of the pile leads to much higher moments (Fig. 5).

Increase of pile stiffness through χ has the expected effect of reducing pile
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Figure 9. Development of (a) pile top movement and (b) pile toe moment
with ground movement.

deflection (Fig. 5). However, reducing χ below 0.002 has little additional
effect on the pile displacements: the pile is sufficiently flexible that the
displacement at the ground surface matches the displacement of the ground
itself. The profile of dimensionless moment, μ1, remains unchanged for
values of pile stiffness χ > 0.05.

The interaction of values of β and χ in influencing the tip movement
and root moment is shown in Fig. 8. It is clear that for a very flexible pile
(χ = 0.0004) the tipmovement ismore or less equal to the groundmovement
for all values of β (Fig. 5), whereas for less flexible piles the proportion of
ground movement at the tip increases with β (or, which is equivalent, with
δo). Similarly, the scaled moment, μ1, is independent of β for higher values
of pile stiffness (the stiffer pile forces the ground to reach its limiting pressure
as it flows past the pile). For the most flexible pile considered the maximum
moment is nearly 6 times the free air value; for the stiffer piles it is still more
than 50% higher than the value obtained for a cantilever displaced in free
air. Thus one of the questions posed is clearly answered: soil-structure
interaction leads to higher moments at depth (out of sight) than would be
estimated from observing the ground surface displacement of the pile and
treating it as an object in air. The result is of course obvious and intuitive
but requires acknowledgement of the interaction between soil and structural
properties. It can be concluded that observation of pile tip movement at the
ground surface gives a very poor indication of the magnitude of moments
in the pile.

The process of gradualmobilisation of ground-pile interaction for a given
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Figure 10. Pipeline crossing displacing fault.

pile can be followed by varying both β and χ in appropriate constant propor-
tion. and for the typical values that we have suggested here, β/χ ≈ 20. We
can follow the gradual mobilisation of pile moment by looking at the varia-
tion of the normalised moment μ2 (10) with increasing normalised ground
displacement δo/B ≈ β (Fig. 9). As ground displacement builds up this
normalised moment approaches 1: the earth pressure coefficient between
the soil and the pile is close to K∗ over the whole length of the pile. A
lower ratio β/χ indicates a stiffer pile: for stiffer piles the limiting moment
is reached more rapidly but the displacement is of course smaller (Fig. 9).

The analysis of the displacements and moments generated in a pile by
translating ground has been shown to be dependent on three dimensionless
parameters giving results which can be applied generally. Defining the con-
trolling parameters does not mean that they are all under our control. The
profile of ground movement may be discoverable with appropriate instru-
mentation but will not be amenable to external restriction. The stiffness
of the pile as a structural element is known but the detail of the inter-
action between the pile and ground, especially in its initial stiffness will
be somewhat unknown and not easy to determine. The key dimensionless
parameters combine structure and soil characteristics. Nevertheless, by in-
voking rather simple functions to describe the nature of the interaction,
even these unknown quantities can be incorporated.

4 Pipeline Crossed by Fault

The second problem to be investigated is actually a simpler version of the
previous one. We imagine a long buried flexible structure such as a pipeline
or tunnel which is crossed by a fault. The fault displaces by a distance 2δo
and we want to discover the structural consequences for the pipeline. The
problem is illustrated in Fig. 10. Symmetry dictates that, at the centre of
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the pipeline, the pipeline displacement is equal to half the overall ground
displacement, and that the point of inflexion in the displacement profile
along the structural element implies that the moment is zero. We might
suppose that the interaction between the pipeline and the ground will be
independent of position along the pipeline. This simplifies somewhat the
formulation of the problem and modifies the boundary conditions. However,
the complicating factor is the uncertainty concerning the length � of the
pipeline which needs to be analysed. The pile in the previous section was
embedded at its lower end into a competent rock layer, and its length was
thus clearly defined. The pipeline is assumed to extend to infinity in both
directions. Assuming fixity at the end x = 0 is equivalent to proposing
that the length � is sufficiently large that there is no influence of the fault
displacement at this position. For a laterally loaded pile in elastic soil, with
coefficient of subgrade raction k, it can be shown (Muir Wood, 2004) that
this might imply a length kB�4/4EI > 64 = 1296, defined in terms of a
dimensionless ratio of structural stiffness and stiffness of ground-structure
interaction. We will expect to discover some equivalent controlling grouping
for the nonlinear problem.

The pipeline is of length �, and flexural rigidity EI, and is fixed at
x = 0, so that both rotation and displacement are prevented (Fig. 10). A
dimensionless coordinate η = x/� defines position, with η = 0 at the fixed
end and η = 1 at the point of intersection with the fault. At η = 1 the
moment is zero but there is a shear force in the pipeline. The only lateral
loading is provided by the moving ground. The overall fault displacement is
2δo. The displacement y of the pipeline is normalised with this displacement,
ζ = y/δo with the requirement that at ζη=1 = 1.

We assume again a tanh function (Fig. 3) to describe the load genera-
tion through relative movement of ground and structural element in terms
of mobilisation of earth pressure coefficient K with relative movement Δ
normalised with some effective section dimension B of the structural ele-
ment.

K

K∗
= tanh

[
λ

(
Δ

B

)]
= tanh [−βζ] (12)

As before β = λδo/B = (ln 3/2) (δo/Δ50) and λ and K∗ are subgrade reac-
tion parameters. The parameterK∗ describes the asymptotic earth pressure
coefficient reached as the relative movement increases; and K describes the
presently mobilised earth pressure coefficient so that the pressure exerted
on the structural element is:

σh = KγD (13)
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Figure 11. Deflection, shear force and bending moment normalised with
maximum values for β = 5 or 2δo/Δ50 = 20/ ln 3.

where γ is an appropriate unit weight for the soil and D is the depth of
the pipeline. The limiting value K∗ is a passive pressure coefficient. For
flow of cohesive soil with undrained strength cu around a cylindrical pile
Randolph and Houlsby (1984) suggest that σh/cu ≈ 10. This would be a
useful starting point in estimation of K∗ for the pipeline.

Deformation of the pipeline is governed by the dimensionless equation

d4ζ

dη4
=

1

χ

K

K∗
=

1

χ
tanh [−βζ] (14)

with

χ =
EIδo
�2

1

K∗γ�2DB
(15)

The problem is thus controlled by two parameters: β controls the initial
stiffness of ground-structure interaction; and, as before, χ is the ratio of
two moments, one a structural property and the other a loading character-
istic. For a cantilever of length � and flexural rigidity EI subjected to a tip
displacement δo with no other loading, the root moment is Mr = 3EIδo/�

2.
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Figure 12. Maximum normalised shear force Φ (17) and bending moment
μ3 (16) as function of β/χ for β = 5: plotted with (a) linear scales; (b)
log:log scales.

For a cantilever of length � subjected to lateral pressures over a width B
given by the limiting value of the lateral stress coefficient K = K∗ over the
entire length, the root moment is Mf = K∗γ�2DB/2. Thus χ = Mr/6Mf .
(The definition of χ for the pipeline is slightly different from the definition of
χ for the pile (7) because the pile is aligned vertically, with gravitationally
varying stress level along its length, and the pipeline is oriented horizon-
tally, and the loading generated between the ground and the structure is
independent of position along the structure.)

The boundary conditions for the analysis (Fig. 10) are zero deflection
and slope at x = 0: ζ = dζ/dη = 0 for η = 0; unit normalised displacement
and zero moment at x = �: ζ = 1 and d2ζ/dη2 = 0 for η = 1.

Once the deformation equation (14) has been solved to give a profile of
normalised displacement ζ with normalised position η, the shear force and
moment can be found by differentiation. The moment M is conveniently
normalised with Mf :

μ3 =
M

Mf
= 2χ

d2ζ

dη2
(16)

and, similarly, the shear force F is conveniently normalised with the loading
Ff equivalent to Mf : the limiting earth pressure coefficient K∗ mobilised
along the entire length �: Ff = K∗γDB�:

Φ =
F

Ff
= χ

d2ζ

dη2
(17)
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Results are presented in Figs. 11-14. The general form of the variation
of displacement, moment and shear force along the structural element is
shown in Fig. 11. As before, the two controlling variables β and χ both
incorporate the fault displacement δo. The ratio β/χ is characteristic of a
specific configuration: the higher the value of β/χ themore relatively flexible
is the pipeline or tunnel. The maximum values of dimensionless moment
μ3 and dimensionless shear force Φ are shown in Fig. 12 as a function of
β/χ. The variation of these maximum values is shown both in linear and
log:log plots: the linear relationship for the moment in Fig. 12b indicates
an inverse power law relationship: μ3 = (β/χ)κ where κ ≈ −0.5. The shear
force is not quite so simply related.

The transition from ‘finite’ length response to ‘infinite’ length response
as the ratio β/χ increases from 500 to 10000 is shown in Fig. 11. For a fixed
value of β = 5 the distributions of pipeline deflection, and dimensionless
shear force Φ and dimensionless bending moment μ3 are shown as a func-
tion of position along the structure. All three quantities are normalised by
their maximum values so that it is only the pattern that is being revealed.
(The maximum values of shear force and moment are shown in Fig. 12; the
maximum value of the normalised deflection comes at the point of inflection,
axis of symmetry of the structure (Fig. 10) at η = 1 and is, by definition,
unity. The maximum value of shear force also occurs at η = 1 where the
fault crosses the pipeline.) For each group of curves the effect of the fault
displacement moves further down the pipeline towards η = x/� = 0 as β/χ
decreases. The peak moment moves from about η = 0.8 to η = 0.6 as β/χ
falls from 10000 to 500. More to the point, as β/χ decreases, the moment
and shear force at the end of the pipeline η = 0 become significantly non-
zero (Fig. 13): only for values of β/χ > 5000 are the values of moment
and shear force at η = x/� = 0 becoming negligible. The analysis is thus
only valid in this range unless there is some actual structural fixity at some
known point along the pipeline.

For a laterally loaded pile in elastic ground the limit of ‘infinite’ pile
response comes for values of the parametric group kB�4/4EI > 64 = 1296.
For the present analysis we have proposed that β/χ > 5000 or

β

χ
=

ln 3

2

K∗γDB

Δ50

�4

EI
> 5000 (18)

Δ50 is the relative displacement required to bring the interaction pressure to
half the limiting value, so that an equivalence can be drawn between the pile-
soil subgrade reaction coefficient k for the elastic analysis and K∗γD/2Δ50

in the present nonlinear case. The two criteria for defining what constitutes
‘infinite’ length thus agree very closely (4× 1296 ≈ 5000).



www.manaraa.com

Macroelement Modelling 415

2000 4000 6000 8000 10000
-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

β/χ β/χ

normalised shear force: Φ

normalised moment: μ3

β = 5 β = 5

5000 6000 7000 8000 9000 10000
-0.06

-0.04

-0.02

0

0.02

a.

b.

moment at x = 0 as proportion 

of maximum moment

shear force at x = 0 as proportion 

of maximum shear force
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β/χ for β = 5: (a) normalised shear force Φ (17) and bending moment μ3
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For acceptably large values of β/χ, which means acceptably large values
of the length � for analysis, the mobilisation of shear force at the intersec-
tion of pipeline or tunnel with the displacing fault and the mobilisation of
the maximum moment in the structure (Fig. 11) are shown in Fig. 14 as
a function of normalised fault displacement 2δo/Δ50. For each structural
resultant a group of curves is shown for values of β/χ=20000, 15000, 10000
and 5000. As the value of β/χ decreases (the relative stiffness of the struc-
tural element increases) the values of the normalised moment and shear
force increase for a given fault displacement. (Recall that the pipeline is
analysed as a cantilever built in at x = 0: an equivalent analysis could be
performed with the pipeline completely free at x = 0 analogous to a laterally
loaded pile of finite length.)

5 Macroelement for Study of Dynamic Response of
Gravity Retaining Walls

Macroelement modelling can be a helpful intermediate way of introducing
some realistic geotechnical nonlinearity in order, for example, to compare
different constitutive possibilities or perhaps just to provide a rapid ‘order-
of-magnitude’ estimate of response against which the results of more exten-
sive numerical modelling - or physical modelling - can be compared. Such
speedymodelling can be particularly beneficial where the concern is to study
the dynamic response of a geotechnical system and, in particular, to study
the way in which that response is influenced by the nature of the dynamic
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Figure 14. Development of shear force andmoment as fault displaces: max-
imum normalised moment μ3 = 2M/K∗γ�2DB (16); maximum normalised
shear force Φ = F/K∗γDB� (17).

input motion. This has been the motivation behind the development of the
macroelement model for a gravity retaining wall that is described here.

The problem that is being tackled is illustrated in Fig. 15: we are con-
cerned to develop a simple model for a gravity retaining wall under dynamic
(seismic) loading. Separate macroelements have been developed for the in-
teraction of the wall and its foundation and for the interaction of the wall
with the retained soil. Fig. 16 defines the sign convention for the forces
acting on the back of the wall, from the retained soil, and on the base of the
wall, from the foundation. The positive directions of movement of the wall
and the underlying ground are shown together with the positive direction
of rotation of the wall. At this stage of the modelling we are concerned
only with horizontal motion and rotation of the wall and will ignore vertical
movements, although the macroelement footing models (see, for example,
Nova and Montrasio (1991); Paolucci (1997); Gottardi et al. (1999); Martin
and Houlsby (2001); Cremer et al. (2001)tell us that any sliding or rotation
of the foundation will in general be associated with settlement or heave of
the foundation. We will then only consider horizontal shaking of the under-
lying ground. We will also neglect the potential loss of contact over part of
the foundation when rocking of the wall occurs. This would obviously be a
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Figure 16. Displacement and force components.

real effect - it is included in the detailed foundation macroelement analysis
of Cremer et al. (2001) - and requires the foundation model to be applied,
rather subtly, to a changing area of contact. The foundation macroelement
model has already been described.

Elastic-plastic macroelement footing models link the hardening of the
yield surface to the settlement. In our application we simplify the problem
by neglecting verticalmovements, and consideringmotions of the underlying
ground that do not involve vertical accelerations. We are concerned only
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Figure 17. Circular failure locus and kinematic yield locus.

with horizontal foundation force Ff and moment Mf . The vertical force
V on the foundation is given by the weight of the wall. The ratio of V to
Vmax, the bearing capacity of the foundation, controls the maximum values
of horizontal force Ff and moment Mf that the foundation can sustain.
The load components and corresponding displacement components must be
properly work-conjugate. For a strip footing of width B we define a force
vector F :

F =

(
Ff

Mf/B

)
(19)

with corresponding work-conjugate displacements:

u =

(
u
Bθ

)
(20)

The four key elements of an elastic-plastic constitutive model are: the
elastic properties; a yield function; a flow rule or plastic potential; and a
plastic hardening rule. We will assume that there is a circular interaction
relationship between the limiting values of force and moment (Fig. 17). As
noted, hardening of the overall yield surface has been deliberately excluded:
this is equivalent to assuming that the vertical load generated by the wall
is about half the bearing capacity of the foundation. The yield and failure
locus for the resulting perfectly plastic material is then a circle. We fur-
ther assume that the plastic potential is coincident with this yield/failure
function for combinations of horizontal load Ff and moment Mf .

The elastic-perfectly plastic approach suggests that for all load combina-
tions inside the yield/failure surface the response is elastic whereas once a
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load combination reaches the yield/failure surface the response is perfectly
plastic. While such a model might provide a crude representation of the be-
haviour of the foundation when monotonically loaded it will be inadequate
for dynamic problems where there will be plastic dissipation of energy even
for load combinations which do not bring the foundation to perfectly plastic
failure. Consequently we introduce a ‘bubble’ yield surface (Al-Tabbaa and
Muir Wood, 1989) which can move around with the current loads, within
the failure surface which itself retains the perfect plasticity character and
thus remains of constant size. We assume for convenience that the yield
surface and failure surface have the same shape (Fig. 17) with the ratio of
sizes being a constituive parameter r. The current centre of the ‘bubble’ is
F̃ .

Within the yield surface (‘bubble’) the response is elastic. We can adopt
the expressions proposed by Gazetas (1991) for the elements of the stiffness
matrix K

e linking changes in force δF with increments of displacement δu:

F = K
e
u =

(
2G/(2− ν) ∼ 0

∼ 0 πGB2/2(1− ν)

)
u (21)

where G and ν are shear modulus and Poisson’s ratio for the foundation
soil. For shallow foundations the off-diagonal terms in the stiffness matrix
can probably be neglected.

When the load combination reaches the boundary of the ‘bubble’ ir-
recoverable displacements δup occur. We assume that they occur in the
direction of the outward normal to the ‘bubble’ at the load point: the yield
surface acts as a plastic potential. The ‘bubble’ may have to move in order
to accommodate the new load state: the change in load state relative to the
change in the centre of the ‘bubble’ must be tangential to the yield surface.
We can define a conjugate point F c on the failure surface having the same
position relative to the centre of this surface (the origin of the load plane,
Fig. 17) as the position of the current load state relative to the centre of

the ‘bubble’. The unit vector b̂ is in the direction linking the current load
state and the conjugate point (Fig. 17). It is convenient, but not essential,
to adopt a translation rule for the ‘bubble’ that implies that the ‘bubble’
can never overlap or intersect the failure surface. This implies that the shift
in the centre of the ‘bubble’ must be in the direction of b̂. This shift then
accommodates any change in load which is in the direction of n̂.

The magnitude of the plastic displacement is controlled by the magni-
tude of the translation of the centre of the ‘bubble’. This translation is
caused by the component of the load increment that is orthogonal to the
‘bubble’ at the current load and introduces a plastic hardening modulus H
is the plastic hardening modulus which can in general be chosen to be some
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Figure 18. Trilinear relationship between earth pressure coefficient and
relative displacement of wall and soil (dashed lines indicate possibility of
updating ua and up when direction of relative displacement changes).

function of the length of the vector b (Fig. 17). We are able to generate
a stiffness relationship linking changes in load components with changes in
displacement:

δF = K
epδu (22)

This can be operated numerically in the usual way with an elastic pre-
diction to test whether the displacement increment involves yielding of the
foundation, and a subsequent plastic correction (or use of combined elastic-
plastic stiffness relationship) to calculate an acceptable change in load.

We have thus defined three possible regimes of foundation response de-
pending on whether the behaviour is elastic (for load changes inside the
‘bubble’); kinematic hardening plastic (for load changes on the ‘bubble’);
or perfectly plastic (for load changes on the failure surface). In this third
case, the ‘bubble’ makes contact with the failure surface, and the only pos-
sible plastic load changes are tangential to both the ‘bubble’ and the failure
surface at the point of contact. The ‘bubble’ must translate parallel to this
tangent so that the two surfaces remain in contact.

5.1 Wall Macroelement

The interaction of the wall with the retained soil is treated separately
from the foundation of the wall. It is assumed that at every level the soil-
wall interaction is represented by a trilinear Winkler spring relationship
between earth pressure coefficient and relative displacement (normalised by
wall height) (Fig. 18). The local response is assumed linearly elastic be-
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tween perfectly plastic active and passive limits. This relationship can be
characterised by these limiting pressures and by the elastic stiffness sepa-
rating them. In addition it is necessary to specify a reference displacement,
which could be the actual value of the displacement required to reach the
full passive earth pressure or full active earth pressure, up or ua as shown
in Fig. 18, or could be an indication of where the initial earth pressure
coefficient Ko lies between the limiting values. Allowing this reference dis-
placement to vary can provide a modest amount of kinematic hardening in
the wall macroelement model.

The relationship between force ormoment and displacement and rotation
of the wall is then deduced by integration of the local response. There are
nine possible types of response depending on the values of displacement and
rotation relative to the reference displacement. These response regimes are
shown in Figs. 19 and 20. In each case the moment is calculated at the
mid-height of the wall.

When all the wall-soil interaction is elastic (Fig. 20a), E in Fig. 19, the
resulting force and moment are:

Fw
2
3γh

2
= 3Ko + k(3u− hθ) (23)

Mw

2
3γh

3
= −[Ko + k(u− hθ)] (24)

For this response regime it is thus simple to generate a stiffness relationship:(
δFw

δMw/h

)
=

2

3
kγh2

(
3 −1
−1 1

)(
δu
hδθ

)
(25)

When all the wall-soil interaction is perfectly plastic with full mobilisa-
tion of active earth pressures (Fig. 20b), A in Fig. 19, the resulting force
and moment are:

Fw

2
3γh

2
= 3Ka (26)

Mw

2
3γh

3
= −Ka (27)

When all the wall-soil interaction is perfectly plastic with full mobilisa-
tion of passive earth pressures (Fig. 20c), P in Fig. 19, the resulting force
and moment are:

Fw
2
3γh

2
= 3Kp (28)
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Figure 19. Response regimes defined by combinations of wall displacement
and rotation.

Mw

2
3γh

3
= −Kp (29)

The six other regimes have combinations of active and/or passive and
elastic conditions over the height of the wall. For regime PE (Fig. 19) the
wall-soil interaction is fully passive towards the top but elastic towards the
base (Fig. 20d). The resulting force and moment are most conveniently
described using intermediate parameters:

λ = 1 +
u− up

hθ
(30)

K1 = Ko + k(u− hθ) (31)

which is the earth pressure coefficient at the bottom of the wall.

Fw
2
3γh

2
= Kp(1 + λ+ λ2) +K1(2− λ− λ2) (32)

Mw
2
3γh

3
= −Kpλ

3 +K1(λ
3 − 1) (33)
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Figure 20. Regimes of wall response: (a) fully elastic E; (b) fully active A;
(c) fully passive P ; (d) PE; (e) PEA; (f) EP ; (g) AE; (h) AEP ; (i) EA.
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For regime AE (Fig. 19) the wall-soil interaction is fully active towards
the top but elastic towards the base (Fig. 20g). The resulting force and
moment are described using intermediate parameters:

λ = 1+
u− ua

hθ
(34)

K1 = Ko + k(u− hθ) (35)

which is the earth pressure coefficient at the bottom of the wall.

Fw

2
3γh

2
= Ka(1 + λ+ λ2) +K1(2− λ− λ2) (36)

Mw
2
3γh

3
= −Kaλ

3 +K1(λ
3 − 1) (37)

For regime EP (Fig. 19) the wall-soil interaction is fully passive towards
the bottom but elastic towards the top (Fig. 20f). The resulting force and
moment are described using intermediate parameters:

λ = 1 +
up − u

hθ
(38)

K1 = Ko + k(u+ hθ) (39)

which is the earth pressure coefficient at the top of the wall.

Fw

2
3γh

2
= Kp(2 + 2λ− λ2) +K1(1− λ)2 (40)

Mw
2
3γh

3
= −Kp(1 + λ− 2λ2 + λ3) +K1λ(1 − λ)2 (41)

For regime EA (Fig. 19) the wall-soil interaction is fully active towards
the bottom but elastic towards the top (Fig. 20i). The resulting force and
moment are described using intermediate parameters:

λ = 1+
ua − u

hθ
(42)

K1 = Ko + k(u+ hθ) (43)

which is the earth pressure coefficient at the top of the wall.

Fw
2
3γh

2
= Ka(2 + 2λ− λ2) +K1(1− λ)2 (44)
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placement and rotation of wall.

Mw

2
3γh

3
= −Kp(1 + λ− 2λ2 + λ3) +K1λ(1 − λ)2 (45)

For regime PEA (Fig. 19) the wall-soil interaction is fully passive at the
top and fully active at the base and elastic in between (Fig. 20e). Again
intermediate parameters are introduced:

λ = 1 +
u− up

hθ
(46)

η =
up − ua

2hθ
(47)

Fw

2
3γh

2
= α1Kp + α2Ka (48)

where

α1 = 3λ2 + 3λη + η2 (49)

α2 = 3− α1 (50)
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Mw

2
3γh

3
= α3Kp + α4Ka (51)

where
α3 = α1 − 4λ3 − 6λ2η − 4λη2 − η3 (52)

α4 = −1− α3 (53)

For regime AEP (Fig. 19) the wall-soil interaction is fully active at the
top and fully passive at the base and elastic in between (Fig. 20h). Again
intermediate parameters are introduced:

λ = 1+
u− ua

hθ
(54)

η =
up − ua

2hθ
(55)

Fw
2
3γh

2
= α1Ka + α2Kp (56)

where
α1 = 3λ2 − 3λη + η2 (57)

α2 = 3− α1 (58)

Mw

2
3γh

3
= α3Ka + α4Kp (59)

where
α3 = α1 − 4λ3 + 6λ2η − 4λη2 + η3 (60)

α4 = −1− α3 (61)

The force exerted by the soil on the wall is explicitly determined by the
actual values of wall displacement and rotation at any time. The complete
surfaces linking force andmoment with displacement and rotation are shown
in Figs. 21a, b. While the nine pairs of expressions for force and moment
could be differentiated in order to convert them to stiffness relationships it is
numerically more practical to use them directly rather than incrementally.

Some element of kinematic hardening is introduced by updating the ref-
erence displacement (at all levels) whenever the combination of displacement
and rotation takes the wall macroelement into the perfectly plastic zones
A or P . The effect of this updating is that the macroelement is effectively
never within either of these zones, but only ever on the limiting boundary.
Although Fig. 18 introduces six quantities, each of which may conveniently
be introduced in certain of the governing equations, there are only in fact
four independent quantities: if the stiffness k and the ‘initial’ earth pressure
coefficient Ko are specified then the values of the displacements required to
reach the passive or active limits are controlled by the values of those limits.
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a. b.

Figure 22. Allowance for inertia of retained soil.

5.2 Inertial Effects

The inertia of the wall is included in the normal way. We assume that
the wall is of rectangular section with height 2h and width B. It is made of
material with density ρw. Its mass is then 2ρwhB per unit length and its
moment of inertia about its centre of mass is 2ρwBh3/3.

There will be inertial effects associated with the movement of the soil in
the foundation and behind the wall. Numerical studies by Paolucci (1997)
and Cremer et al. (2001) show that the inertia of the foundation soil can
be neglected. Soil velocities decay very rapidly away from the footing itself.
This is then a convenient simplification.

The inertia of the soil behind the wall cannot be neglected - accelera-
tions of this soil are of the same order as the accelerations of the wall itself.
Calculation procedures such as that used by Nadim (1980) propose that the
soilmovements occur as a result of sliding on inclined planes behind the wall
(Fig. 22a). It might be supposed that the inclination of such sliding planes
would change with the direction of motion of the wall (active movement
away from the soil encouraging steeper failure planes than passive move-
ment towards the soil) (Zarrabi-Kashani, 1978). In actual dense granular
materials, the initiation of failure will tend to lead to dilation and reduc-
tion of strength so that any failure zones which have developed may attract
future deformation. (Such a hypothesis lies behind the adapted Newmark
‘sliding block’ procedure suggested by Koseki et al. (1998)). For wall move-
ments which do not actually mobilise the full strength of the soil the nature
of the deformation mechanism is less well defined. Here, as a pragmatic first
order approximation, it will be assumed that the inertial contribution of the
soil is constant and can be represented by ‘attaching’ horizontal layers of
soil to the back of the wall (Fig. 22b). Following Nadim we assume that
slding occurs on an inclined plane from the back of the wall up to the free
surface. We will neglect vertical inertia and simply assume that the length
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of the attached soil layer at each level on the wall is z
√
2, where z is the

distance below the top of the wall. The mass of the wall is then increased
by 2

√
2ρsh

2. The moment of inertia of the wall about its centre of mass
is increased by 4

√
2ρh4/9. Realistically we are not concerned with large

rotations of the wall so the conversion of sliding horizontal layers of soil
to a triangular mass of attached soil does not really introduce any further
significant approximations.

5.3 Solution Procedure

The wall is assumed to be initially at rest, with zero velocity and accel-
eration, so that horizontal and moment equilibrium can be imposed. This
controls the initial horizontal force and moment imposed on the foundation
which must balance those imposed by the backfill soil. Then at subsequent
times any translational or rotational acceleration of the wall arises because
of imbalance of the forces and moments acting on the wall from the founda-
tion and from the retained soil generated as a result of relative movement
of the wall and the underlying ground.

Within each calculation cycle the motion of the wall is calculated as
follows. The velocity and acceleration (translational and rotational) of the
wall at the end of the previous time step are integrated to give the new hor-
izontal displacement and rotation of the wall. The horizontal displacement
of the underlying ground is known. The relative displacement (translation
and rotation) of the wall can then be used to calculate the new horizontal
force and moment on both the foundation (using the incremental relation-
ships) and the wall (using the actual values of relative displacement). The
equation of motion is then written in terms of these initial values together
with the incremental relative displacement in order to calculate the new
displacements during the time step. The absolute acceleration of the wall
is ẍ = ü + ẍg where xg = (x, 0)T is the displacement of the underlying
ground which provides the disturbing input motion for the wall.

Then we can write:

Mü+ λu̇+Kf (u− uo) + F o = −Mẍg (62)

where F o represents the sum of the various force components acting on
the wall at the start of the time step and uo is the relative displacement
of the wall at the start of the time step. The stiffness term Kf includes,
at present, only the incremental elastic-plastic stiffness of the foundation
because the formulation of the incremental stiffness for the interaction with
the retained soil is more cumbersome.

If the force and moment on the foundation lie within the elastic ‘bubble’
and the wall displacement regime is in the elastic E region, then the motion
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Figure 23. Response of foundation macroelement: movement of ‘bubble’
yield surface within failure surface.

is undamped. Practically, then, it is necessary to introduce some damping
λ in order to remove energy from the system. The damping matrix λ is:

λ =

(
Cxx 0
0 Cθθ

)
(63)

and the damping coeficients that have been used have been adapted from
those proposed by Gazetas (1991) for surface foundations.

The solution of (62) is treated in a semi-implicitmanner using amodified
Newton-Raphson technique adapted from Crisfield (2001).

5.4 Results of Analysis

Three examples of the operation of the macroelement model are shown
here. First the response of the foundation macroelement on its own (with-
out retained soil) is presented to illustrate the combination of kinematic
hardening and perfect plasticity in the response. The wall is given width
B = 3 m and height 2h = 5 m. The angle of friction of the foundation soil
(which is used to ensure that the design of the wall is plausible) is 25◦. The
size of the ‘bubble’ yield surface is taken as r = 0.3. A harmonic horizon-
tal input motion is assumed with amplitude 0.5g and frequency 2 Hz. The
movement of the ‘bubble’ within the failure surface is shown in Fig. 23.

In order to add in the wall macroelement a value is required for the
‘spring’ stiffness k in Fig. 18. Typically, it is suggested in the literature
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that the wall displacements required to reach fully active conditions and
fully passive conditions are 0.1% and 1% of wall height for a wall retaining
dense sand. (Of course the actual values would be influenced by any initial
compaction stress locked into the soil, but these values give an order of mag-
nitude.) Then, with passive and active pressure coefficients calculated from
angle of friction as usual (we are ignoring wall friction) we can deduce that
k ≈ (Kp −Ka)/0.009 ≈ 111(Kp −Ka). Calculations have been performed
with φ = 40◦ and with k = 487.

The double macroelement model is then also subjected to harmonic in-
put of acceleration amplitude 0.2g and frequency 2 Hz. It is instructive to
look at the path in the regime map of Fig. 24 (compare Fig. 19). The path
lies almost entirely in the AE region, with a brief excursion along the A
boundary. Whenever the path reaches the A boundary the reference dis-
placements ua and up are updated and become permanent displacements
of the wall. This is illustrated in Fig. 24. There is a small permanent ac-
tive, outward displacement in the first cycle; thereafter the wall develops no
further permanent displacement.

Earthquake motion tends to be of quite short duration with a very few
cycles of high acceleration and many cycles of much lower acceleration with
a typical duration of 10 − 20 s depending on the location and nature of
the earthquake. Once the motion becomes large enough to move into the
regimes of nonlinear response of the wall interacting with the foundation and
the retained soil, then the detail of the movement of the wall depends on
the exact time within the earthquake that particular large pulses of ground
acceleration occur.

This can be illustrated in two ways. In Fig. 25 the same wall model
with the same initial conditions is analysed using an actual time history
of earthquake acceleration imposed in four different ways: with the time
reversed and with the sign of the accelerations reversed. Reversing the sign
of the acceleration can have the effect of changing the direction of the most
damaging pulse of the input from active to passive loading.

We can also explore this aspect of the system nonlinearity by showing
the dependence of the translation and rotation of the wall on the amplitude
of the earthquake (as indicated by the maximum acceleration) relative to
the critical steady unidirectional acceleration required to generate active
failure of the wall for the same time history applied with different scales.

The acceleration histories for four earthquakes are shown in Fig. 26.
The system being analysed is extremely nonlinear. The input motion that
is generated by an earthquake is extremely irregular. Put together, the
overall system response is somewhat chaotic. There is no linear variation of
displacement or rotation of the wall with this relativemagnitude of the input
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Figure 24. Response of retaining wall to harmonic input: (a) displacement
path in response regime diagram; (b) development of permanent displace-
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motion (Figs. 27, 25). In fact, for some time histories of input motion there
is not even a monotonic variation of movement with relative acceleration
input magnitude.

The response of this simple macroelement system shows rather clearly
that, so far as performance of the system is concerned - by which, in the
present context, we mean primarily the permanent displacement developed
during the seismic event - the occurrence of high acceleration pulses of short
duration is not necessarily devastating. Themacroelementmodel also allows
us to explore parametric variations of both the geotechnical features of the
system and the input motion itself in order to understand their interaction.

5.5 Wall Model: Discussion

A macroelement model has been developed which combines two separate
macroelements to describe the interaction of a gravity retaining wall with
its foundation and with the retained soil. The foundation macroelement
introduces the key features observed in nonmonotonic response of founda-
tions under combinations of vertical, horizontal and moment loading and
accommodates kinematic plasticity in order to include the dissipation of
energy that will accompany reversal of loading direction. This macroele-
ment is a subset of more sophisticated foundation macroelements described
elsewhere.

The macroelement for the retained soil adopts a traditional ‘Winkler
spring’ approach to the development of earth pressure, treating each level
of the wall as independent of every other level, and allowing the local earth
pressure coefficient to vary between fully active and fully passive limits with
an elastic intermediate response. The behaviour of the whole wall is then
the integration of these Winkler springs. Nine regimes of response can be
identified. A modest degree of kinematic hardening has been introduced
into this wall model.

The response of the combined macroelement model for the wall with its
foundation and with the retained soil has been studied for various dynamic
excitations of the underlying ground. When realistic earthquake excitations
are used the nonlinearity of the overall system response becomes clear. The
benefit of such a simple model for parametric study of effects of geotechnical
and dynamic variables has been demonstrated.

6 Conclusions

The nature of the problems analysed is not expecially complex and the solu-
tion procedures are rather straightforward. However, the several examples
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illustrate how one might introduce plausible nonlinear models where the
data of actual behaviour are unavailable and nevertheless present results in
terms of clearly defined dimensionless groups—the use of which evidently
increases the applicability. Parametric study then becomes efficient.

Cremer et al. (2001) write in the context of development of a macroele-
ment to describe the behaviour of a footing under combined vertical, hori-
zontal and moment loading: ‘It is well known that an alternative model of
the foundation behaviour obtained by the finite element method, with suit-
able nonlinear constitutive laws and special contact elements, requires a high
degree of modelling competence and is time consuming. The macroelement
provides a practical and efficient tool, which may replace efficiently, in a first
approach, a costly finite element soil model, and which ensures the accurate
integration of the effect of soil-structure interaction.’

Similar sentiments may be expressed here. The nonlinear Winkler spring
approach adopted for interaction of pile or pipeline with the ground bla-
tantly disregards the continuity of the soil surrounding the pile or other
structural element but introduces sufficient allusion to actual soil behaviour
to allow one to understand and interpret aspects of the overall system re-
sponse.

One of the important possibilities of analyses of the sort described here is
the pedagogic potential to educate engineers in the reality of soil-structure
interaction. We all know that it is important to consider the soil and struc-
tural elements as a system and that it is usually not possible to produce
sensible results unless we do so. The use of dimensionless parameters for
analysis—whether of linear or nonlinear problems—provides a basis for stat-
ing whether the effects of interaction are in fact important and, more espe-
cially, emphasises that the response is controlled by the relative stiffnesses
of the ground and structure. (A salutary case history of development of
stresses in a flexible integral bridge abutment is outlined by Muir Wood
and Nash (2000)).

If practising engineers are not as aware as they should be of the im-
portance of soil-structure interaction then we educators must take some of
the blame. We atomise the teaching from the moment that the students
arrive, with separate courses on structural mechanics, fluid mechanics, soil
mechanics and (in my experience) retain and deepen these divisions as the
degree programmes proceed with only limited time being allocated to ite-
grative activities which show the consequences of taking a broader system
approach. Simple analytical methods such as those presented here can help
the campaign to improve this awareness.
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List of Symbols

b vector from current load to conjugate point §5
b̂ unit vector in the direction of b §5
B width of the wall §5
cu undrained soil strength §4
Cxx damping coefficient §5
Cθθ damping coefficient §5
D depth of pipeline §4
E Young’s modulus §3, §4
f̃ yield surface §5
F shear force §4
F̃ current centre of the ‘bubble’ yield surface §5
F c conjugate point on the failure surface §5
Ff horizontal foundation force §4, §5
F o force components acting on the wall at start of time step §5
Fw force of backfill on wall §5
G shear modulus §5
h height of wall §5
I second moment of area of structural section §3, §4
k pile-soil or wall-soil subgrade reaction coefficient §5
kh initial stiffness of the pile-ground interaction §3
K mobilised lateral pressure coefficient §3, §4
Ka active earth pressure coefficient §5
Kf stiffness matrix §5
Ko initial earth pressure coefficient §5
Kp passive earth pressure coefficient §3, §5
K∗ asymptotic earth pressure coefficient §3, §4
K1 earth pressure coefficient at the bottom of the wall §5
K

e elastic stiffness matrix §5
K

ep elastic-plastic stiffness matrix §5
� length of pile §3, §4
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M mass matrix §5
Mf moment at root of cantilever pile under full soil loading §3, §4
Mf foundation moment §5
Mmax maximum moment §3, §4
Mr moment at root of pile §3, §4
Mw moment applied by backfill on wall §5
n̂ unit vector normal to the yield surface §5
r relative size of yield surface and failure surface §5
u displacement §5
uo relative displacement of wall at start of time step §5
δup plastic displacement increment §5
ua displacement required to reach full active earth pressure §5
up displacement required to reach full passive earth pressure §5
ẍ absolute acceleration of the wall §5
xg displacement of the underlying ground §5
y displacement §3, §4
ymax maximum displacement §3
z distance below the top of the wall §5
α parameter characterising ground movement profile §3
α1 intermediate parameter §5
α2 intermediate parameter §5
α3 intermediate parameter §5
α4 intermediate parameter §5
β dimensionless parameter: pile-ground stiffness §3, §4
γ unit weight of the soil §3, §4
δ ground movement §3, §4
δo movement at the ground surface §3, §4
Δ relative displacement of structure and ground §3, §4
Δ50 relative movement required to move halfway to the limi-

ting value
§3, §4

ζ dimensionless displacement §3, §4
η dimensionless coordinate §3, §4
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η intermediate parameter §5
θ wall rotation §5
λ intermediate parameter §5
λ damping matrix §5
μ1 dimensionless bending moment §3, §4
μ2 dimensionless bending moment §3, §4
μ3 dimensionless bending moment §4
ν Poisson’s ratio §5
ρw density of the material of the wall §5
σh horizontal stress §3, §4
φ′ angle of friction §3
Φ dimensionless shear force §4
χ dimensionless structural stiffness §3, §4
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for Sub-Failure Cyclic Loading of Foundations
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1 Introduction

Cyclic loading is an important aspect of offshore design because the en-
vironmental loading during extreme storm conditions generally dominates
compared with the permanent loading. In most cases the focus for assessing
the effect of cyclic loading is on quantifying the reduction in shear strength
(and hence foundation capacity), although assessment of cumulative defor-
mations under cyclic loading may also be critical for some designs. The
chapter describes how a systematically planned programme of laboratory
tests may be used to construct failure envelopes, or in a more general sense
contours of cumulative shear strain as a function of normalised shear stress
levels and number of cycles.

Strain rates associated with cyclic loading are much higher than are
typically used for monotonic laboratory tests, and this will be evident in
the contour plots presented later. The increase in resistance due to higher
strain rate in part compensates for the damage due to cyclic shearing. In
most offshore design, rather than implement a sophisticated model for the
soil that simulates the effects of cyclic loading into a numerical (e.g. FE)
analysis, the soil strength is adjusted globally by applying a reduction factor
based on the severity of the cyclic loading.

There are many idealisations that have to be made to achieve this, one
of which is the representation of a storm loading sequence, with varying
magnitude and period of the cyclic loading, by a uniform harmonic cyclic
shear stress (Fig. 1). Depending on the failure mode associated with the
foundation, different stress paths will be followed in different parts of the
failure mechanism. In principle this may be addressed by conducting ap-
propriate element tests (triaxial compression, simple shear, triaxial exten-
sion) to evaluate damage due to the cyclic loading differentially through the
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various mechanism (Fig. 2), and then adjusting soil strengths in a numer-
ical analysis of the foundation (Andersen and Lauritzsen, 1988; Andersen,
1991). In practice, anisotropy (both in monotonic response and cyclic dam-
age) is often idealised by focusing on the element response obtained from
simple shear tests, which is generally representative of the average response.

Figure 1. Contrast between field and laboratory cyclic shearing.

Figure 2. Map of different soil tests and design applications (Andersen
et al., 2008), where H is the horizontal force, h describes its application
point, W ′ is the buoyant weight of an ideal offshore foundation, and τ
represents the local induced shear stress.
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Shallow caisson foundations, such as used for the Draupner E and Sleip-
ner platforms in the North Sea, and which are viewed as potential founda-
tions for tripod-mounted offshore wind turbines in moderate water depths,
are subjected to high cyclic vertical loads because of the relatively large
lever arm through which horizontal loading is applied (Fig. 3). This can
result in biased 2-way cyclic loading of the caisson foundations, where the
extreme load is negative (i.e. uplift). Model tests have indicated that the
stress reversal triggers significant excess pore pressures and strength loss
but, provided the average load is still well positive, the net effect is to in-
duce cumulative settlement rather than uplift (Bye et al., 1995; Byrne and
Houlsby, 2002; Kelly et al., 2006).

Figure 3. Example loading regimes for a 4-legged jacket structure, where
symbol V stands for the vertical load, Va for the average value for V , Vcyc

for the cyclic amplitude, and N the number of cycles.

2 Cyclic Shear Strength

The soil supporting a given foundation will be capable of redistributing
stresses away from zones where cyclic-induced strains are accumulating.
This provides some justification for simplifying the complete six-degree
of freedom design loading into an equivalent one-dimensional cyclic stress
regime applied to the soil. The nature of the cyclic stress regime may be
classified under four different types, ranging from symmetric 2-way shear
stresses (comparatively rare, although the most commonly applied in lab-
oratory testing programmes) to asymmetric 2-way, ideal 1-way and biased
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1-way (Fig. 4). The last category, where the shear stresses do not reverse in
sign, is the least damaging type of cyclic loading, generally leading to mild
accumulation of strains, but limited excess pore pressure development.

Figure 4. Classification of cyclic loading regimes.

Fig. 5 to Fig. 7 show examples of a monotonic test and two cyclic tests
at different stress levels carried out under undrained conditions on a silty
seabed sand. The monotonic test shows the very high undrained strength
that can be mobilised due to dilation induced negative pore pressures. The
phase transformation point is critical, and in many ways represents a bet-
ter measure of monotonic strength against which to normalise the cyclic
behaviour, than any notional ‘maximum’ shear stress mobilised at a partic-
ular strain level. Here, the phase transformation occurs at a shear stress of
about 20 kPa (τ/σ′

vc = 0.27, where σ′
vc is the vertical consolidation effec-

tive stress) (Fig. 5), and 2-way cyclic shearing at a stress level of ±15 kPa
(τcyc/σ

′
vc = 0.2) leads to failure in about 25 cycles (Fig. 6). Liquefaction

occurs during the mid-part of each cycle as failure is approached, accom-
panied by a rapid increase in cyclic shear strain. At the lower cyclic shear
stress level of τcyc/σ

′
vc = 0.15, similar behaviour occurs eventually, but only

after more than 500 cycles (Fig. 7).
The precise point of ‘liquefaction’ failure cannot be identified explicitly,

since although the excess pore pressure reaches the vertical stress during
the mid-point of the later cycles, dilation occurs as the sample is sheared
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under increasing shear stress. From a design point of view, a more critical
measure is the level of shear strain.

Figure 5. Monotonic simple shear test on carbonate silt. In the first picture
above, σ′

hc is the horizontal consolidation effective stress.

Figure 6. Cyclic simple shear test on carbonate silt with τcyc/σ
′
vc = 0.2.

A series of cyclic tests at different shear stress levels allows construction
of (accumulated) strain and excess pore pressure contours as a function of
number of cycles. The manner in which such diagrams are constructed is
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Figure 7. Comparison of cyclic responses for τcyc/σ
′
vc = 0.15 (top) and 0.2

(bottom).

illustrated in Fig. 8, with the information extracted from 1 monotonic and
4 cyclic tests. The cyclic stress levels are normalised by the shear strength
measured in the monotonic test (possibly at a specified shear strain level,
rather than a true peak). Then, in each test the number of cycles required
to develop a particular strain level is plotted, and finally contours for each
accumulated shear strain level are drawn through the data.

Cyclic loading tests are typically carried out at a frequency of 0.05 to 0.1
Hz, representing typical frequencies of wave loading in the offshore environ-
ment. Because of the much higher strain rates during a cyclic loading test
(potentially exceeding 1%/s) compared with a monotonic test (typically
5%/hour for simple shear tests), it is possible for the cyclic stress ratio,
τcyc/su, to exceed unity, as illustrated by data on Drammen clay shown in
Fig. 9 (Andersen, 1991).

The corresponding procedure for excess pore pressure development is
shown in Fig. 10, this time with the cyclic shear stress level expressed
as τcyc/σ

′
vc. Liquefaction corresponds to an excess pore pressure ratio of

Δu/σ′
vc ∼ 1.

A typical design storm loading will comprise a series of waves (and hence
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Figure 8. Construction of shear strain contour diagrams from cyclic tests.
Here τcyc/s

SS
u stands for the cyclic shear stress imposed, relative to the

monotonic strength in simple shear.

Figure 9. Example cyclic simple shear data on Drammen clay, showing
effect of higher strain rates in cyclic tests (after Andersen, 1991.)

loads) of increasing magnitude, but decreasing number, with the peak de-
sign loading usually occurring only once. Rather than model the complete
loading sequence, offshore design often makes use of an ‘equivalent’ number
of cycles (of the peak design loading) to represent the cumulative damage
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Figure 10. Construction of excess pore pressure contour diagrams from
cyclic tests.

that occurs under the full sequence. Either the shear strain or excess pore
pressure contour diagrams may form the basis for establishing the equivalent
number of cycles, and the procedure is illustrated in Fig. 11 (Andersen et al.,
1992). Starting with the smallest (most frequent) loading level, the excess
pore pressure ratio that would develop under that cyclic shear stress is es-
timated by plotting the data point at the corresponding values of τcyc/σ

′
vc

and the number of cycles. The notional contour for that magnitude of ex-
cess pore pressure ratio is then traced back (parallel to the closest actual
contour) to reach the next higher cyclic shear stress level in the storm se-
quence. That point represents an equivalent number of cycles at this cyclic
shear stress level to give the same degree of damage as the larger number
of cycles at the lower cyclic shear stress level. The process is now repeated,
but with the end point from each stage plotted by adding the number of
cycles at the new cyclic shear stress level to the (deduced) equivalent num-
ber of cycles obtained so far (from the previous loading levels). The process
finishes with the peak design load level, and the final point represents the
equivalent number of cycles for that design load level, and that particular
storm sequence. Typically the equivalent number of cycles will be in the
range 10 to 20 cycles (although the procedure illustrated in Fig. 11 leads to
Neq = 60).

The equivalent number of cycles may be used to establish a ‘cyclic’ stress
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Figure 11. Application of Miner’s rule to evaluate equivalent number of
cycles.

Figure 12. Derivation of an equivalent ‘cyclic’ stress-strain curve.

strain curve, which represents the envelope of cyclic (or accumulated) shear
strain developed over that number of cycles for different cyclic shear stress
levels Fig. 12. The cyclic stress strain curve may be used in a numerical
(e.g. FE) analysis to evaluate the cyclic response of the foundation, in place
of a non-linear monotonic response.
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The discussion so far has been based around symmetric 2-way cyclic
loading, although the same principles apply equally well to more general,
asymmetric cyclic loading. Just as two shear stress magnitudes are required
to specify asymmetric loading (the average shear stress, τa, and the cyclic
shear stress, τcyc), so two magnitudes of shear strain are also relevant: the
accumulated permanent strain, γp (measured at mid-cycle - sometimes re-
ferred to as average strain, γa) and the cyclic shear strain, γcyc. This is
illustrated in Fig. 13 (Andersen et al., 2008).

Figure 13. Accumulation of permanent and cyclic shear strains and excess
pore pressure (after Andersen et al., 2008).

Failure under cyclic loading may be defined according to a specified max-
imum level of shear strain. Combinations of average and cyclic shear stress
that lead to failure under different numbers of cycles are shown for triaxial
conditions in Fig. 14, where failure in this case has been defined as a shear
strain level of 15% (Andersen et al., 2008). Regions (at either edge) limited
by the average accumulated shear strain are distinguished from those (in the
centre) that are limited by cyclic shear strain. Equivalent failure contours
for cyclic simple shear tests are shown in Fig. 15 (Andersen et al., 2008).

An alternative way of representing the data is to replace the cyclic shear
stress axis by the peak (or failure) shear stress, τf = τa + τcyc. This shows
more clearly the extent to which rate effects allow shear stresses exceeding
the monotonic shear strength to be sustained for a small number of cycles
(see Fig. 16). Note that for cyclic strain rates that may be 3 or 4 orders of
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Figure 14. Failure envelopes from cyclic triaxial tests on Drammen clay
(after Andersen et al., 2008).

Figure 15. Failure envelopes from cyclic simple shear tests on Dram-
men clay (after Andersen et al., 2008), where sDSS

u is the monotonic shear
strength in simple shear.

magnitude greater than typical shear strain rates for monotonic tests, and
rate dependency of 10 to 15% per log cycle, the strength at cyclic strain
rates may be 30 to 60% greater than the monotonic strength.

Depending on the application, much lower shear strain levels may be
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Figure 16. Alternative form of failure envelopes plotting maximum shear
stress against the average shear stress.

permitted in a design, particularly where sensitive equipment such as an
offshore wind turbine has to be supported. In such cases it is more useful
to consider contours of accumulated and cyclic shear strain under different
combinations of average and cyclic shear stress and a specified (equivalent)
number of cycles. An example is shown in Fig. 17 for simple shear tests on
Drammen clay, for the case of 10 cycles (Andersen, 1991).

A very large programme of laboratory tests is required to develop a com-
plete picture of the cyclic response of a given soil, and few offshore projects
justify sufficient tests to achieve this given that the testing programme must
also address variations due to depth (different strata) and also a region that
may span an area of several square kilometres. As is evident from the pre-
vious slides, the most extensive database for cyclic response is probably
that developed in the 1980s for Drammen clay (Andersen, 1991). A typi-
cal approach is to undertake sufficient tests to allow comparisons with the
Drammen clay database, and provide a basis for generic adjustment of the
failure contours.

The range of failure contours (defined as a shear strain level of 15%) for
normally consolidated clays of different plasticity index is shown in Fig. 18
for simple shear tests respectively, for Neq = 10 and taking failure as when
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Figure 17. Contours of cumulative (γa) and cyclic (γcyc) shear strain from
simple shear tests on Drammen clay (Andersen, 1991).

either the cumulative (average) or cyclic shear strain reaches 15% (Andersen
et al., 2008). Under simple shear conditions, there is remarkable consistency
in the cyclic shear strength envelopes of all clays, with the only exception
being the extreme example of Storebaelt, with a plasticity index of 7 to
12%. The effect of plasticity index was more marked for triaxial conditions
(Andersen et al., 2008). In general though, for both testing conditions,
high plasticity clays tend to show greater strain rate dependency, and hence
show greater cyclic shear strength, while the reverse is true for low plasticity
clays.

3 Application to Foundation Response

As noted earlier, the actual loading applied to a foundation is multi-dimensional,
and even in one vertical plane will consist of vertical, horizontal and mo-
ment components. Since the average and cyclic proportions for each load
component will rarely be the same, a procedure is needed to choose an
appropriate combination that represents the design loading conditions ad-
equately. For shallow foundations, this may be achieved using the yield
envelope as a measure of the extent to which the strength of the foundation
soils is mobilised.

Fig. 19 shows a slice through the three-dimensional yield envelope in
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Figure 18. Comparison of failure envelopes for clays of different plasticity
index (Andersen et al., 2008).

V − M − H space for a shallow skirted foundation. The yield envelope is
expressed in normalised terms, as H/Asu0 plotted against V/Asu0, where
A and su0 are the foundation plan area and shear strength at skirt tip
level respectively, and represents a two-dimensional slice through the three-
dimensional envelope for the appropriate moment, M . Three loading con-
ditions are plotted, showing the permanent load, V (assuming H and M
are both zero), the average load for the design storm conditions and the
corresponding peak loads.

The material factor, γm,p, against failure under the peak storm load
conditions may be expressed as the ratio of the radial distance to the peak
load, divided by the radial distance to the yield envelope, passing through
the peak load. The point at which failure would occur if the peak loads were
factored by 1/γm,p defines the mode of failure in terms of the incremental
plastic movements, δv and δh, with δv/δh = −dH/dV (the gradient of the
yield envelope) from the associated flow rule.

At peak load, Vp, Hp, the upper bound theorem leads to

Vpδv +Hpδh =
W̃

γm,p
(1)
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Figure 19. Yield envelope approach to foundation design.

where W̃ is the internal plastic work (volume integration of shear strains
and su). It is more convenient to rewrite this as

Vp +Hp

(
δh
δv

)
p

=
W̃/δv
γm,p

=
W̃ ′

γm,p
(2)

where W̃ ′ is the work per unit vertical displacement increment, for the given
failure mechanism (corresponding to peak conditions).

The material factor for average storm load conditions, but relative to
the failure mechanism relevant for the peak loads (so same ratio, δh/δv as
above), may be estimated from the work equation

Va +Ha

(
δh
δv

)
p

=
W̃ ′

γm,a
(3)

Since W̃ ′ is unaltered, we may write

γm,a

γm,p
=

Vp +Hp

(
δh
δv

)
p

Va +Ha

(
δh
δv

)
p

(4)

and the cyclic load reversal is therefore expressed as
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1

γm,p
− 1

γm,a

1

γm,a

=
γm,a

γm,p
−1 =

Vp +Hp

(
δh
δv

)
p

Va +Ha

(
δh
δv

)
p

−1 =

Vp − Va + (Hp −Ha)

(
δh
δv

)
p

Va +Ha

(
δh
δv

)
p

(5)
This equation gives the relative magnitudes of the cyclic and average shear
stresses to be applied in laboratory testing, or in interpolating from contour
maps of damage.

As noted earlier, laboratory testing for offshore projects tends to focus
on simple shear testing, partly to maximise the use of very expensive soil
samples, and partly because simple shear response is representative of the
average stress-strain response. However, some foundation types or loading
conditions lend themselves to triaxial testing, particularly when the focus
is on settlement or low-level cumulative shear strains, rather than on sta-
bility. Fig. 20 shows the general arrangement from a recent project, where
a caisson foundation for a wind farm development was embedded through
clay to tip into medium dense sand. The load level was relatively low in
comparison to the caisson capacity, but cumulative settlements under ver-
tical cyclic loading was a potential design problem. (Note that horizontal
loading of the caisson was assumed to be taken out entirely within the clay
layer.)

Figure 20. Schematic of caisson design.

A triaxial sample of the sand was consolidated under stresses representing
the average (long time scale) design storm conditions, and then the cyclic
component was applied in an undrained manner. The response is shown in
Fig. 21, showing a cumulative axial strain of 0.2%. A centrifuge model test
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Figure 21. Cumulative axial strain from triaxial test on sand.

of the foundation gave rise to 16 mm of settlement under the corresponding
cyclic loading regime, which was 0.23% of the foundation diameter. The
comparison is somewhat approximate (and perhaps fortuitous), but suggests
a general consistency of the results at the element level and for the model
foundation.

4 Role of Model Testing in Design

Physical modelling can play a major role in the design process, either
through validation of numerical approaches or directly, for example, by in-
dicating safe levels of cyclic loading that may be applied without adverse
effects. Even where field conditions are not reproduced accurately, numeri-
cal (or other) design techniques should be able to match the results of model
tests accurately, particularly since the soil stratigraphy will usually be sim-
pler than in the field, and more accurately characterised. The interplay of
different input into the design process is illustrated in Fig. 22.

Physical modellers are mostly sceptical of the ability to simulate soil
response through numerical analysis, particularly when it comes to cyclic
loading. In both approaches there are limitations in modelling the soil
response, either due to shortcomings or simplifications in the constitutive
models adopted for numerical analysis, or because of the use of reconstituted
soil in model tests. Issues of time scale, with high strain rates and yet
relatively slow cyclic loading in comparison to consolidation times, can lead
to errors in physical modelling.

Numerical analysis is often restricted to 2-dimensional analysis, although
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Figure 22. Interplay of different input into the design process.

this is becoming less of an issue with the increasing power of computers.
Physical modelling captures the relevant 3-dimensional geometry, but may
have size limitations (particularly with centrifuge modelling). In both ap-
proaches, detailed visualisation is possible, with unlimited access to kine-
matics, strain and stress paths throughout the domain for numerical mod-
elling, but more limited internal measurements in model tests. Image pro-
cessing and PIV techniques in model testing (White et al., 2003) has allowed
a major improvement in quantifying mechanisms.

Centrifuge modelling, as opposed to small scale prototype experiments
conducted in the field or laboratory, allows true scale modelling of stresses
and shear strength relative to each other and to the stiffness of structural
members within the soil. It is also a cost effective means of conducting
limited parametric studies of the response of a foundation system to cyclic
loading of different magnitudes.

At the simplest level, model tests allow the load-displacement response
of a foundation or anchoring system to be quantified for a given strength
profile in the soil. It is essential that consistent and accurate methods
are used to obtain the strength profile, for example using different types
of penetrometer, and that any changes in shear strength or sand density
through the course of tests is monitored.

Detailed observations using PIV enable accurate measurements of defor-
mations at the soil surface of down planes of symmetry, revealing the spatial
decay of deformations and internal features such as shear bands. It is also



www.manaraa.com

Offshore Design Approach. for SubFail. Cyc. Load. of Found. 459

possible to model complex geometries or construction techniques such as
pile or anchor installation, dynamic compaction, suction installed caissons;
complex soil response such as crushing or strain softening and the effects of
cyclic loading, creep or large deformations may be reproduced faithfully by
using the appropriate soil for the field conditions.

The second half of this chapter shows examples of model tests undertaken
to explore the effects of cyclic loading, consider anchoring systems first,
where the focus is on assessing any reduction in capacity of the system due
to cyclic loading. Because anchoring systems will tend to pull out of the soil
as deformations accumulate, capacity is a critical issue. Foundation systems
loaded in compression will then be considered, where the focus is more on
cumulative deformations that may lead to a serviceability limit state.

5 Anchoring Systems

5.1 Suction Anchors

Examples of model testing for two different anchoring systems, suction an-
chors and dynamically embedded anchors, are considered. The first example
is drawn from the relatively early period of experience with suction anchors
- large caissons that are installed using under pressure, pumping water out
from within the caisson cavity. In moderate water depths, catenary moor-
ings may be used without leading to an excessive footprint of a floating
system, and these provide primarily horizontal loading of the suction an-
chor, with loading angles generally around 25◦ or less.

The example is from an actual project, the Laminaria field in the Timor
Sea operated by Woodside Energy (then Woodside Offshore Petroleum)
(see Fig. 23). Catenary moorings were used to secure the FPSO (floating
production, storage and offloading) facility in a water depth of 380 m, with
suction anchors used to anchor the moorings. Originally, the anchors were
proposed with removable lids, used during installation but with the anchors
then left open topped; this led to a concern as to the extent to which the
anchors might undergo vertical movement during cyclic loading. Eventually,
partly as a result of the model testing, the 5.4 m diameter anchors were
designed with permanent lids and a maximum embedment depth of 12.7 m
(Fig. 24).

The padeye to which the catenary mooring is attached is located at of
two thirds of the embedment depth, on the basis that this is the centre
of resistance for soil profiles where the strength increases approximately
proportionally with depth. This will give maximum lateral capacity, with
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Figure 23. Location of Laminaria field in the Timor Sea.

Figure 24. Laminaria suction anchors in transit.

pure translation of the caisson rather than forward or backward rotation
(Fig. 25). (Note, the padeye position should be chosen so that the line of
action of the mooring chain crosses the central axis of the caisson at the
depth of the centre of resistance.)

The model tests were conducted on the beam centrifuge at UWA, as
described by Randolph et al. (1998). The general layout of the tests, with
two tests being conducted in each ‘strongbox’ containing the soil, is shown
in Fig. 26, and the model suction caisson, with a scaling ratio of 1:120, is
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shown in Fig. 27. Note that the suction caisson has a perforated cap and
was jacked into the seabed (in flight, at 120 g, where g stands for the grav-
ity acceleration) rather than being installed by suction. Extensive testing
subsequently has shown that the method of installation (suction or jacking)
has negligible effect on the axial capacity (Jeanjean et al., 2006; Chen and
Randolph, 2007a).

Figure 25. Effect of padeye depth on suction anchor response.

Figure 26. General arrangement for centrifuge model tests on suction an-
chors.

The seabed sediments at Laminaria consist of a carbonate mud, and bulk
samples were recovered from the seabed for the model tests. Two soil
samples were prepared, one a normally consolidated sample (consolidated
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Figure 27. Schematic and photograph of model suction anchors.

in flight on the centrifuge), and the other light overconsolidated by pre-
consolidation in a press on the laboratory floor in order to match the field
profile better (Fig. 28). The strength profiles were measured using a T-bar
penetrometer (Stewart and Randolph, 1994).

Monotonic and cyclic tests were carried out in each of the two soil sam-
ples. Fig. 29 illustrates the failure zones that developed in the normally
consolidated and lightly over consolidated samples. In the former, the soil
behind the caisson remained attached to the caisson initially, but then after
a movement of about 30 or 40% of the caisson diameter the suction was lost
and a gap appeared (accompanied by a reduction in the lateral resistance,
see Fig. 30). The photograph shows evidence of significant forward move-
ment of the soil behind the caisson prior to the gap developing. For the
over consolidated sample, a gap appeared right from the start of movement
of the caisson, leaving a sharp back-face.

The monotonic response of the caisson in the normally consolidated sam-
ple is shown in Fig. 30. The peak capacity corresponds well with a 2-sided
upper bound solution based on Murff and Hamilton (1993), while after the
gap appears the capacity reduces to the 1-sided bound solution (Randolph
et al., 1998). The rotation response indicates forward rotation initially, and
then a reduction in rotation once the gap appears.

The corresponding cyclic response is shown in Fig. 31. Pure 1-way cyclic
loading was applied, initially for 100 cycles between zero and the design load
of 4.6 MN. The maximum load level was then increased to the factored de-
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Figure 28. Comparison of shear strength profiles from field and centrifuge
model tests. Here, γ′ is the effective unit volume weight.

Figure 29. Post-failure photographs of model suction caisson in normally
consolidated (left) and lightly overconsolidated (right) samples.

sign of 6 MN and a further 200 load cycles applied. On further increase
of the load level to 7.2 MN, the chain parted after 16 cycles. The mono-
tonic loading response appears to provide a bounding envelope to the cyclic
response.

The cumulative horizontal translation of the caisson with the three pack-
ages of cyclic loading is shown in Fig. 32. The movements are relatively
small, and appear to be stabilising at the intermediate load level, even
though this is close to the 1-sided failure load of the caisson.

Corresponding monotonic and cyclic responses for the caisson in the
lightly over consolidated sample are shown in Fig. 33, with the cyclic load-
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Figure 30. Monotonic response of suction caisson in normally consolidated
sample.

Figure 31. Cyclic response of suction caisson in normally consolidated
sample.

ing comprising 100 cycles at each of 5.5 MN, 7.1 MN and 9.2 MN. The
anchor started to fail after 10 cycles at the highest load level, which corre-
sponds to the peak resistance measured in the monotonic test. The overall
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Figure 32. Cumulative horizontal displacement of suction caisson under
cyclic loading.

Figure 33. Overall response of suction caisson in lightly overconsolidated
sample.

cyclic response, including the detail shown in Fig. 34, shows that the mono-
tonic curve again closely matches the monotonic response. This is also true
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of the rotational response, indicating that the same failure mechanism under
monotonic loading pertains for the incremental motion under cyclic loading
(Fig. 35).

Figure 34. Detailed cyclic response of suction caisson in lightly overcon-
solidated sample.

Of particular interest was the relative magnitudes of pre-failure vertical
and horizontal movement. This is shown in Fig. 36 for the tests in the over
consolidated sample, with upward vertical movement of about 50% of the
horizontal movement initially. Interestingly, the test on the over consoli-
dated sample showed much smaller vertical movements, even though other
aspects (such as the rotation) were well matched. The high ratio of vertical
to horizontal movement from the monotonic test gave rise to concern for
the open topped caisson design.

In summary, the cyclic loading tests showed a robust response with lit-
tle evidence of damage to the soil as a result of cyclic loading. The caisson
withstood high levels of cyclic loading without significant movements until
the factored design load was exceeded. The measured capacities were rea-
sonably consistent with those predicted using the upper bound approach,
even though the rotation of the caisson in over consolidated soil showed
evidence of a different mechanism with the centre of rotation well below
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Figure 35. Rotational response of suction caisson in lightly overconsoli-
dated sample.

Figure 36. Relative displacements of suction caisson in lightly overconsol-
idated sample.
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the centre of gravity (Fig. 35). The overall conclusion from the study was
to revise the design and adopt a closed top for the caisson rather than a
removable lid.

The effect of pure vertical cyclic loading was investigated by Chen and
Randolph (2007b), with 1-way cyclic loading applied to a centrifuge model
caisson with embedment ratio of 4. They found that, in three slightly
different lightly overconsolidated clay samples, cyclic load levels of 72 to
86% were required to trigger significant incremental upward movements and
failure (see Fig. 37). This is a slightly higher range than reported previously
by Clukey et al. (1995), where failure occurred at load levels as low as 61
to 89%, although some tests showed no failure at load levels of 67 to 69%.
An additional feature of the latter tests was the inclusion of a small (and
varying) loading angle of up to 6◦ from the vertical.

Figure 37. One-way vertical cyclic loading response of suction caisson in
kaolin (Chen and Randolph, 2007b).

5.2 Dynamically Embedded Anchors

There has been a rapid growth over the last decade in the use of dynami-
cally embedded torpedo-shaped anchors. These have been spearheaded by
Petrobras for anchoring mobile offshore drilling units off the coast of Brazil
(Medeiros, 2001), although an alternative design for use in the North Sea
has been developed by Lieng et al. (1999) (see Fig. 38, top left and right
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respectively). Both those anchors have the mooring chain attached at the
top of the anchor on the centreline. More recently a dynamically embedded
anchor has been developed by Delmar for use in the Gulf of Mexico, with
the mooring chain attached to a revolvable shank part way down the shaft
of the anchor (Zimmerman et al., 2009) (see Fig. 38, bottom left).

Figure 38. Commercial use of dynamically embedded anchors.

Anchors such as these are released from 50 to 100 m above the seabed
with sufficient length of chain above them to the release point to allow full
penetration. The anchors reach a terminal velocity of 25 to 30 m/s at the
seabed, and penetrate with the tip embedded 2 to 3 anchor lengths. Al-
though loading is usually applied at around 40◦ from the horizontal, vertical
pullout through the entry wound is a critical design issue. Cyclic loading
tests with pure vertical loading were undertaken by Richardson (2008) on
the beam centrifuge at UWA, with anchors scaled by 1:200 (see Fig. 39).

A typical test result is shown in Fig. 40, with (inevitably) 1-way cyclic
loading applied at a maximum load level of 80% of the monotonic capac-
ity. Failure was not triggered at this level in four separate tests; post-cyclic
monotonic tests gave capacities in the range 98 to 109% of the monotonic
capacity without cyclic loading. Note that the large displacement to mo-
bilise the anchor load is primarily associated with stretching of the anchor
chain, rather than movement of the anchor itself.
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Figure 39. Schematic of dynamic anchor embedment and 1:200 model
anchor.

Figure 40. Typical cyclic loading response of torpedo anchor (Richardson,
2008).

6 Skirted Foundation in Calcareous Silt

Attention is now turned to shallow foundations loaded in compression,
where accumulation of deformations under cyclic loading is a potential ser-
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viceability design issue, even though the capacity is not compromised. Such
caissons, or skirted foundations, are used to support subsea equipment such
as manifolds, but are also being considered as foundations for tripod sup-
ported offshore wind farms.

An example is taken from the doctoral research of Watson (1999), with
details of the cyclic model testing reported by Watson and Randolph (2006).
Centrifuge model tests at a scaling ratio of 1:100 were undertaken on a
caisson foundation, 75 mm in diameter with skirts of penetrating by half the
diameter into normally consolidated calcareous silt (Fig. 41). Vertical and
horizontal loading were applied through a rigid loading arm, and the tests
discussed here were conducted under a fixed vertical load, V , of 40% of the
monotonic capacity. Symmetric 2-way horizontal cyclic loading was applied
at different load levels, with normalised loads ranging from ΔH/Asu0 of
±0.2 to 2, where A is the plan area of the foundation and su0 is the shear
strength at the level of the skirt tips. A typical monotonic response is shown
in Fig. 41, showing significant non-linearity in response for ΔH/Asu0 > 1.

It was found that vertical settlement accumulated during the horizontal
cyclic loading, with an almost linear increase with the number of cycles,
but with the rate of increase strongly affected by the cyclic loading level
(Fig. 42).

The tests were interpreted in a manner similar to that for laboratory
element tests, with ‘fatigue’ contours developed showing different magni-
tudes of cumulative vertical settlement as a function of cyclic horizontal
load level and the number of cycles (see Fig. 43). A different form of con-
tour plot was used to express the amplitude of horizontal movement, since
this tended to reach a plateau beyond about 40 cycles; hence it was easier
to construct contours showing the cyclic movement hcyc/D as a function of
cyclic horizontal load level for different numbers of loading cycles (h is the
total horizontal displacement, hcyc is the horizontal displacement induced
by the cyclic loading, and D is the foundation diameter).

Although the main focus was on compression loading, tests were also
conducted with ambient tensile loading applied to the foundation. Perhaps
not surprisingly, for a given level of cyclic loading, cyclic horizontal and cu-
mulative vertical displacements were significantly larger for tensile loading
compared with compression Fig. 44. The horizontal movements tended to
accelerate for load levels of ΔH/Asu0 ≥ 1.4 if the static vertical loading
was tensile. Further studies of shallow skirted foundations loaded in ten-
sion have been reported recently by Acosta-Martinez and Gourvenec (2008).

Using contour diagrams of the form shown in Fig. 43, empirical methods
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Figure 41. Model caisson and response in normally consolidated calcareous
silt.

Figure 42. Cumulative settlement vave of caisson under cyclic horizontal
loading (Watson and Randolph, 2006).

were developed by Watson (1999) for predicting foundation response un-
der general loading conditions, such as experienced during storm loading.
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(a)

(b)

Figure 43. Design charts for cyclic displacements of caisson (Watson and
Randolph, 2006): (a) Contours of average vertical displacement, vave/D;
(b) Horizontal cyclic displacement, hcyc/D.

An example is shown in Fig. 45, showing the cyclic loading history, and
the comparison between observed and predicted vertical settlement, again
maintaining the vertical loading constant at V = 0.4Vult, where Vult is the
failure load under pure vertical load.

Full details of the methodology for predicting the cyclic response are
given in Watson (1999). Essentially, the approach is based on Miner’s Rule,
where for each level of cyclic loading the accumulated settlement from pre-
vious loading is attributed to an equivalent number of cycles at the current
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Figure 44. Comparison of caisson response under horizontal cyclic loading,
for tensile and compressive vertical loads (Watson and Randolph, 2006).

Figure 45. Estimation of cumulative vertical displacement of caisson under
full storm horizontal cyclic loading (Watson and Randolph, 2006).
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load level. Additional settlement from the (real) additional cycles at the
current load level may then be calculated. The approach needed to be
modified to take account of work-hardening due to increasing embedment
(resulting in increased vertical and horizontal capacities) in order to reach
the reasonable agreement between predicted and measured accumulation of
vertical settlement (Fig. 45).

In this parametric study of the effects of cyclic loading on cumulative
deformations, the style of loading is similar to that for programmes of lab-
oratory testing. A monotonic test to failure (Hult) is useful to set the scale
for cyclic loading, and then separate cyclic model tests are carried out at
different magnitudes of ΔH/Hult. Fatigue contours are then constructed to
capture the effect of cyclic loading level and numbers of cycles on the ver-
tical and horizontal deformations. Finally, a Miner’s rule approach is used
to integrate the cumulative effect of a cyclic loading spectrum with varying
magnitude of loading.

7 Summary

For practical offshore design, the effects of cyclic loading are generally based
on estimating cumulative ‘permanent’ and cyclic shear strains, and cumula-
tive excess pore pressure, from cyclic triaxial and simple shear tests. Simple
shear tests are favoured over triaxial tests because of the small sample size,
greater flexibility in the applied shear stress regimes and because they rep-
resent average stress paths well.

Rather than follow a full storm sequence, damage from cyclic loading
is assessed using an equivalent number (often less than 20) of cycles at a
shear stress level reflecting the peak storm loading. The equivalent number
of cycles is derived from contour plots of cumulative damage, and may then
be used to develop a ‘cyclic’ stress strain response.
A limited number of site specific cyclic loading tests may be sufficient to
justify adoption of generic curves for cyclic response derived from other
soils. The procedure is still relatively robust, since similar cyclic strength
envelopes have been observed for different soils with a wide range of plas-
ticity indices.

The relative magnitude of average and cyclic shear stresses may be as-
sessed for a given application by considering the relative material factors
with respect to the multi-dimensional yield envelope for the foundation.
This allows a consistent choice, reflecting the average shear stress mobilisa-
tion under different loading conditions.

Model tests have a useful role to play in design in terms of identifying
potential failure mechanisms or quantifying effects of cyclic loading that are
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difficult to capture through numerical analysis. Centrifuge model tests allow
correct scaling of strength and stress levels in the soil. However, the most
difficult aspect of cyclic loading to capture is the balance between accumu-
lating damage (for example excess pore pressures and strain softening) and
healing due to consolidation, since at model scale the time scale of cyclic
loading is relatively long in comparison to consolidation times.

The two main focuses in the latter part of this chapter were on (potential)
loss in tensile capacity of anchors due to cyclic loading, and cyclic induced
deformations for shallow foundations. Both suction anchors and dynami-
cally embedded anchors are relatively robust in respect of cyclic loading,
with safe threshold levels under purely vertical loading that exceed 70% of
the monotonic capacity. Cyclic loading of dynamically embedded anchors
showed no tendency for incremental pullout at cyclic load levels of 80%
of the monotonic capacity, and generally showed higher post-cyclic failure
loads than when tested monotonically without cycling.

Cyclic induced deformation of shallow foundations were explored and
quantified in a similar manner to laboratory element tests. Horizontal cyclic
loading much greater than the base sliding capacity (ΔH/Asu0 > 1) tended
to show an acceleration in both horizontal movement and cumulative verti-
cal settlement. Fatigue contour diagrams of cyclic-induced deformation as a
function of cyclic loading level and numbers of cycles provided a reasonable
basis to assess the effect of a wave loading spectrum with varying magnitude
of cyclic load using a Miner’s rule approach.

8 Acknowledgements

This chapter draws from the activities of the Centre for Offshore Founda-
tion Systems (COFS), established under the Australian Research Council’s
Research Centres Program and currently supported as a Centre of Excel-
lence by the State of Western Australia and through grants FF0561473 and
DP0665958 from the Australian Research Council. The author would like
to acknowledge the significant contribution from colleagues at COFS and
elsewhere in the world in the material presented.



www.manaraa.com

Offshore Design Approach. for SubFail. Cyc. Load. of Found. 477

List of Symbols

a average load conditions §1, §2, §3
cyc cyclic load conditions §1, §2, §6
p peak (or failure) load conditions §3
A foundation plan area §3, §6
D foundation diameter §6
E Young’s modulus §3
g gravity acceleration §5.1
h application point of the horizontal load §1
h horizontal displacement §6
H horizontal load §1, §3, §6
Hult failure load under horizontal load §6
M overturning moment §3
N number of cycles §1
Neq equivalent number of cycles §2
q deviatoric stress §3
su shear strength §2
su0 shear strength at skirt tip level §3, §6
sSS
u monotonic strength in simple shear §2
sDSS
u monotonic shear strength in simple shear §2
u pore pressure §2
vave cumulative settlement of caisson §6
V vertical load §1, §3, §6
Vult failure load under pure vertical load §6
W̃ internal plastic work §3
W̃ ′ work per unit vertical displacement increment §3
W ′ buoyant weight of an ideal offshore foundation §1
γ shear strain §2
γ′ effective unit volume weight §5.1
γp accumulated permanent shear strain §2
γm,a material factor for average load conditions §3
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γm,p material factor for peak load conditions §3
δh incremental horizontal plastic movement §3
δv incremental vertical plastic movement §3
εa axial strain §3
σ′
hc horizontal consolidation effective stress §2

σ′
vc vertical consolidation effective stress §2

σ′
v vertical effective stress §2

τ shear stress §1
τf peak (or failure) shear stress §2
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1 Introduction

Estimating the shaft capacity of piles driven into sand is an area of con-
siderable uncertainty, because of the complex processes involved and the
sensitivity of the normal effective stress acting on the pile shaft to minor
volume changes within the sand. The starting point for calculating values
of shaft friction τs for piles in non-cohesive soil is the expression

τs = σ′
n tan δ = Kσ′

v0 tan δ = βσ′
v0 (1)

where σ′
n is the normal effective stress acting round the pile shaft after

installation, K is the stress ratio, σ′
v0 is the in situ effective vertical stress

and δ is the angle of friction between pile and soil. The latter quantity
may be measured in interface shear tests for the particular pile material.
Kishida and Uesugi (1987) reported a detailed study of the effects of surface
roughness, and showed how the interface friction angle may be related to
the friction angle of the soil in terms of a normalized roughness coefficient,
defined as the maximum roughness of the pile surface (over a gauge length
of d50 for the soil) normalized by the value of d50. For typical pile surfaces
(oxidized mild steel or concrete), the normalized roughness coefficient will
exceed 0.05, and the coefficient of friction at the interface will lie in the range
0.75 to 1 times that for the soil itself. An alternative assumption, where
interface shear data are not available, is to assume that the interface friction
angle δ may be approximated as φcv, the critical state angle of friction. This
may be justified on the basis that no dilation is to be expected between the
sand and the wall of the pile.

For driven piles in sand and other soils of high permeability, it has long
been realized that the magnitude of shaft friction at a given depth can
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reduce as the pile is driven further, with the net effect that the average
friction along the pile shaft can reach a limit and even reduce as the pile
embedment increases (Vesic, 1977). That is the basis for the design method
in the API (2007) design guidelines for offshore structures Fig. 1, although
the logic behind the approach has never been justified.

Figure 1. Design approaches for estimating shaft friction for piles in sand.

Over the last 20 years, however, more rational design approaches have
been developed, based on improved understanding of the main mechanisms.
Actual measurements of the variation of friction along the piles were ob-
tained through carefully instrumented pile tests undertaken by the research
group at Imperial College (Lehane et al., 1993). The phenomenon of ‘friction
degradation’ is illustrated in Fig. 2 with profiles of shaft friction measured
in the three instrument clusters at different distances (h) from the tip of a 6
m long, 0.1 m diameter, pile as it is jacked into the ground. For comparison,
the cone profile is plotted on the same scale, but with qc factored down by
100 (where qc stands for the cone resistance). The shaft friction measured
at h/D = 4 (where D is the pile diameter), in particular, follows the shape
of the qc profile closely, allowing for differences in cone and pile diameter.
Comparison of the profiles from the instrument clusters at h/D = 4 and
h/D = 25 shows that the friction measured at the latter position is generally
less than 50 % of that measured close to the pile tip.

The above data lent support to an alternative design approach for driven
piles proposed by Toolan et al. (1990), where a minimum (lower bound) fric-
tion ratio, β, was adopted over most of the pile length, apart from a region
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Figure 2. Experimental evidence of friction degradation (Lehane et al.,
1993).

near the pile tip, where an upper limit was postulated (Fig. 1).

Figure 3. Visual evidence (left) and schematic model (right) of mechanism
for friction degradation for piles in sand (after White and Bolton, 2004).

The physical basis for friction degradation is the gradual densification
of soil adjacent to the pile shaft under the cyclic shearing action of installa-
tion. This process is enhanced by the presence of crushed particles from the
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passage of the pile tip (Fig. 3), which gradually migrate through the matrix
of uncrushed material (White and Bolton, 2004). Quantification of the path
taken by individual soil particles shows evidence of ‘relaxation’ towards the
pile shaft in the vicinity of the pile tip (White, 2002).

The far-field soil acts as a spring, with stiffness equal to 4G/D (where G
is the soil shear modulus), so that any densification close to the pile results
in reduced radial effective stress (Fig. 3). The operative value of G will
be high, since the soil is heavily over-consolidated having moved through
the zone of high stress close to the pile tip during installation and is being
unloaded. Simple calculations show that reduction in the width of the shear
zone by as little as 1 grain diameter could account for near total loss of the
normal effective stress acting on the pile shaft (White and Bolton, 2004).

2 Constant Normal Stiffness Direct Shear Tests

Investigation of the friction degradation mechanism may be undertaken by
means of direct shear tests conducted under conditions of constant normal
stiffness (CNS) (Johnston et al., 1987; Shahrour and Rezaie, 1999). Ex-
ternal measurements of the shear and normal stresses may be enhanced by
observations through a glass-sided shear box (Fig. 4).

Results of an extensive series of tests of this nature have been reported
by DeJong et al. (2003, 2006). Tests were performed using a direct shear
device modified to enable interface shearing and image capture for PIV
analysis (Fig. 5). The interface shear box was 60 mm × 100 mm with a
typical specimen height of 20 mm. A 12 mm thick Perspex window extended
along the length of one side of the shear box. The top platen was fixed to
the loading piston to prevent particle movements in the upper portion of
the specimen due to platen rotation. The frame of the upper part of the
shear box was constrained with rollers to prevent vertical movement while
allowing unrestrained horizontal movement. Global displacement and stress
measurements were acquired at every 0.01 mm of horizontal displacement.

A Nikon 995 digital camera mounted on a bracket at a lens to image
plane distance of about 10 cm and equipped with a tether control was used
to acquire digital images through the Perspex window. 1600 × 1200 pixel
images with a typical field of view of 35.0 mm by 26.25 mm captured the
central 1/3 of the 100 mm specimen in addition to the top platen and inter-
face plate. Images were obtained throughout the monotonic test (t059m)
and during cycles 1-5, 21-25, and 41-45 of the displacement controlled cyclic
tests at 0.1 mm interface displacement intervals.

Two sands were used during testing (Fig. 6). IMDEX 16-30 sand is a
subrounded silica sand with a d50 of 0.72 mm. LeGendre 16-30 sand is a
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well-graded angular carbonate sand from the Northwest Shelf, Australia,
with a d50 of 0.83 mm. All samples were prepared by tamping to a medium
relative density of 60-65%. The CNS boundary conditions were an initial
normal stress of σn0 = 100 kPa, and normal stiffness of k = 250 kPa/mm.

Figure 4. Glass-fronted constant normal stiffness shear box and axial pile
response.

Fig. 7 highlights typical CNS cyclic interface shear behaviour at rela-
tively small cyclic displacements for the silica sand. An initial increase in
shear stress to 150 kPa (corresponding to a friction coefficient of 1.2) dur-
ing displacement to +1 mm mirrored the monotonic behaviour. Following
displacement reversal at ±1 mm, a rapid decrease to 30-40% of the peak
shear stress was observed within the first 0.1 mm of displacement, followed
by a non-linear transition zone over about 0.3 mm of displacement, which
led into a region in which the shear stress increased at a constant rate. The
shear stress then increased more rapidly as the displacement reversal limit
(±1 mm) was approached. As the number of cycles increased, the initial
decrease in shear stress occurred more rapidly, the transition zone narrowed,
and the shear stress increased more rapidly near the displacement reversal
limit.

In the global displacement plot, a characteristic ‘saddle’ behaviour was
observed following initial dilation of 0.06 mm. Between displacement re-
versals, contraction occurred within approximately the first 35% (0.7 mm)
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Figure 5. Apparatus for conducting constant normal stiffness shear box
tests including digital imaging of the soil response.

Figure 6. Appearance of silica and carbonate sand grains.

followed by dilation over the remaining 65% (1.3 mm) (see schematic in-
set on Fig. 7). The rate of contraction was higher than the dilation rate,
resulting in cumulative contraction of 0.28 mm over 45 cycles, with a cor-
responding reduction in normal stress from 100 kPa to 36 kPa.

The characteristic displacement behaviour within three regions of the
specimen for each cycle interval is shown in Fig. 8, where the horizontal
coordinate is relative to the initial position and the vertical coordinate is
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Figure 7. Global response of silica sand for small cyclic displacements.

Figure 8. Characteristic displacement paths in different zones (silica sand).

relative to the interface. Patches T391 (14.7 mm), B51 (2.7 mm), and B119
(1.0 mm) correspond to the upper part of the sample, outside the shear
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zone, on the border of the shear zone, and within the shear zone respectively.
The dilation associated with initial shearing to +1.0 mm followed by the
‘saddle’ contractive-dilative behaviour in subsequent cycles is clearly evident
in T391. In contrast, patch B119 is characterized by horizontal random
movement with minor vertical displacements due to proximity to the rough
interface. In cycles 1-5 the displacement behaviour of patch B51, which
lies initially 2.7 mm from the interface shear zone, was similar to T391, but
with larger horizontal displacements (0.6 mm). In the later cycles behaviour
was more random, containing increased horizontal displacements (0.8 mm),
and a displacement pattern more similar to patch B119. This transition
is indicative of the widening of the shear zone to include patch B51, and
matches with the observed increase in shear band thickness.

Figure 9. Profile of total horizontal displacements (silica sand).

Summary results from the PIV analysis were generated by averaging
displacements within each patch row. The average horizontal displacements
between the limit reversals (+1.0 mm to -1.0 mm) in cycles 1, 5, 21, 25,
41, and 45 are plotted in Fig. 9. The shear strain within the lower portion
of the shear zone (0.0 mm to 3.57 mm) is consistent between all cycles
and averages 0.38 (0.34 to 0.44) for the cycles plotted. The percent slip
averaged 8.9% throughout cycling. The volumetric strain was relatively
constant, averaging 0.014. The shear zone thickness increased from 3.6 mm
in cycle 1 to 5.0 mm and 5.6 mm in cycles 21 and 41, respectively. Above
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the shear zone, the soil moved horizontally, reflecting compression of the
sample against the end walls of the box. The amplitude of this horizontal
movement decreased from 0.40 mm to 0.23 mm between cycles 1 and 45 as
the peak shear stress, and hence the horizontal compression of the sample
reduced.

Corresponding results for cyclic shearing of the carbonate sand are shown
in Fig. 10 and Fig. 11. Initial shearing to +1.0 mm resulted in a maximum
shear stress of 140 kPa, with the specimen initially contracting by 0.02 mm
before dilating to 0.04 mm. The maximum shear stress achieved at ±1.0 mm
decreased to 71 kPa after 45 cycles. However, the maximum stress ratio ob-
served at ±1.0 mm averaged 1.2 for all cycles due to continuous decrease in
the average normal stress per cycle. A total contraction of 0.35 mm resulted
in a decrease in the normal stress to 20 kPa, at zero shear stress - notably
lower than observed with the silica sand. The minimal initial dilation is
indicative of increased particle rearrangement due to crushing as increased
angularity would increase particle frustration and inhibit rearrangement.

PIV analysis showed that the shear zone is significantly larger than in
silica sand but less sharply defined (Fig. 11). The average shear strains for
cycles 1-5, 21-25, and 41-45 within 4 mm of the interface averaged 0.33,
0.22, and 0.17, respectively. The percent slip averaged 5.4%, 32.7%, and
47.0% for cycles 1-5, 21-25, and 41-45, respectively. Increased slip is at-
tributed to increased particle rearrangement enabled by particle crushing
adjacent to the fully rough interface. It is noted that the silica sand glued
to the interface surface is significantly harder than the carbonate sand and
will not wear. Unlike previous observations, the upper bound of the shear
zone decreased, from about 10 mm to 6 mm between cycles 1 and 21 beyond
which it remained relatively constant. The depth of the shear zone, and the
horizontal movement due to compression of the ends of the shear box, are
both lower than in the silica sand tests.

Comparison of the results for the silica and carbonate sands emphasises
the importance of the soil mineralogy on the global interface response and
the micro-mechanical behaviour. Particle crushing was observed close to the
interface for the carbonate sand, coupled with increased slip at the interface
with cycling (Fig. 12). This resulted in accelerated degradation compared
with silica sand.
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Figure 10. Global response of carbonate sand for small cyclic displace-
ments.

Figure 11. Profile of total horizontal displacements (carbonate sand).
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Figure 12. Degree of grain crushing due to shearing.

2.1 Prediction of Cyclic Response Under CNS Conditions

The progressive reduction in normal and shear stress during interface cy-
cling under CNS conditions arises from the cumulative contraction of a
well defined shear band adjacent to the pile-soil interface. GeoPIV analysis
quantitatively demonstrates that the specimen deformation is concentrated
within a thin interface shear band, typically several mean particle diameters
(d50) in thickness. The progressive cycling of the interface leads to a net
contraction of the interface shear band, and hence a reduction in interface
normal stress. It is this reduction in normal stress that governs friction
degradation.

The system can therefore be modelled as an interface, of thickness hs,
that is dilating and contracting within each cycle leading to a cumulative
net contraction by distance Δh (DeJong et al., 2006). After a specimen
contraction of Δh from an initial specimen void ratio of e0, the void ratio
of the interface shear band, esb, is:

esb =

(
1− Δh

hs

)
(1 + e0)− 1 (2)

Permissible values of esb lie between the maximum and minimum void ratios
of the specimen. An additional limit is the no-tension condition for drained
(or dry) sand, so Δh cannot exceed σn0/k (where k is the CNS stiffness).
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DeJong et al. (2006) provide the following discussion in respect of the
void ratio limits, emin and emax:

Conventional practice is to define the emin and emax limits following
the ASTM (2004) procedures, with emin obtained by vibrating a spec-
imen under a known weight corresponding to a normal stress of ∼14
kPa, while emax is obtained by a sand deposition into a known volume
using a funnel or an open cylinder about 0.6 times the diameter of the
mould. Since the sand falls onto a slope at the angle of repose, the re-
sulting state can be likened to a critical state at a very low stress (equal
to about 1 kPa at mid-depth of specimen). Correlations assembled by
Cubrinowski and Ishihara (2000) suggest that the critical state voids
ratio as effective stress tends to zero is slightly lower than emax and
corresponds to a relative density of about 10% in clean silica sands
(e.g. Lee and Seed, 1967; Verdugo and Ishihara, 1996). Others have
related the CSL to emax at a nominal stress of typically 1 kPa (e.g.
Klotz and Coop, 2002). Void ratios slightly higher than emax can be
achieved through other deposition conditions and can occur locally in
laboratory specimens following shearing (e.g. Frost and Jang, 2002).
Void ratios lower than emin may be achieved at high stress levels and
are associated with particle breakage. Breakage increases the coeffi-
cient of uniformity, which in turn reduces emin. For CNS interface
testing, an appropriate emin value may be defined as the void ratio
at which further cyclic loading at a given stress level will induce no
additional volume change. The ASTM emin test provides a suitable
value of emin for the stress level of ∼14 kPa; the variation of emin

with stress level is discussed below. In CNS tests, during monotonic
shearing to failure, the deforming soil close to the interface will shear
towards a critical state.

A simple model was proposed by DeJong et al. (2006) whereby the spec-
imen contraction over a single cycle was defined as a fixed fraction, 1/Nchar,
of the potential change in density during contraction to emin.

Δesb
ΔN

= esb(N+1) − esb(N) = − 1

Nchar

(
esb(N) − emin

)
(3)

where Δesb/ΔN is the change in shear band void ratio per cycle, esb(N+1)

is the shear band void ratio at cycle N + 1, and esb(N) is the shear band
void ratio at cycle N . Integrating over N cycles yields:

esb(N+1) = emin + (e0 − emin) e
−N/Nchar (4)

where Nchar is a characteristic number of cycles. Combining Eq. (2) with
the CNS condition (Δh = Δσ′

n/k) enables the evolution in Δh with N to
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be found.
A reasonable fit to the specimen contraction data from the cyclic CNS

tests is found by using the shear band thickness (hs) reached at the end of
each test and a characteristic number of cycles (Nchar) equal to 15 (Fig. 13).
The expression follows the degradation trend reasonably well aside from dif-
ferences due to dilation in the first cycle which are not explicitly accounted
for in the analysis. Only test t075c (carbonate sand) diverges from the
model in the later cycles. This divergence arises because the emin value
(0.639) for calcareous sand compared to the initial state (e0 = 0.758) re-
quires a specimen contraction of 0.41 mm, which exceeds the no-tension
limit of σ′

n0/k by 0.01 mm. Therefore, Eq. (4) does not fully capture be-
haviour in the later cycles of test t075c.

The above contraction model can be explored further to predict the lower
limit of the interface normal stress at the end of a cyclic test. The CNS
spring stiffness, k, links specimen contraction with loss of interface normal
stress, σ′

n, defining the test path in specimen height−σn space. Noting that
the specimen contraction is limited to the shear band, the test paths can
be recast as straight lines in esb − σ′

n space with gradient (1 + e0)/hsk (see
Fig. 14) by combining the CNS condition with the idealized interface system
(Eq. 2) to give:

esb = e0 −
(
σ′
n0 − σ′

n

khs

)
(1 + e0) (5)

Eq. (5) reveals the link between shear band thickness, confining stiffness
and the degradation of interface normal stress with change in voids ratio.
For a given change in e, any increase in shear band thickness (hs) or CNS
stiffness (k) leads to a greater loss of interface normal stress, since the test
path gradient is flatter in esb − σ′

n space. A corresponding upper bound
value of σ′

n can be defined on the test path at the intersection with the
CSL, which represents a critical state condition, which is achieved following
sufficient monotonic shearing.

The degradation of σ′
n with cycling can be predicted by combining

Eq. (4) and (5), leading to:

σ′
n = σ′

n0 − khs

(e0 − emin)
(
1− e−N/Nchar

)
(1 + e0)

(6)

It should be noted that the void ratio esb referred to in Eq. (4) is the
minimum value within a cycle, so Eq. (6) relates to the minimum normal
stress within a cycle, not the value at failure.
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Figure 13. Comparison of measured and predicted contraction during
cyclic CNS shearing.

Figure 14. Predictive model to estimate minimum normal stress (after
DeJong et al., 2006.

The minimum value of σ′
n that can be achieved by cycling is the inter-

section of the test path with the line emin. It is likely that the variation in
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emin with normal stress σ′
n will reflect the conventional (monotonic) critical

state line (CSL). It is found that the CSL is straight in e − lnσ′ space at
high stresses, and flattens at low stresses, tending to a value close to the
emax value. For more breakable sands, the transition in the CSL occurs at
lower stresses, reflecting the earlier onset of particle breakage.

Two forms of the emin line in e− lnσ′
n space may be considered: a stress-

independent value; and an alternative emin line running parallel to the CSL
and passing through emin at a stress of 14 kPa (Fig. 14).

Particle breakage is an additional consideration, since that will tend to
reduce the minimum density of the sand. The manner in which this will
affect the resulting stress paths has been explored by White and Bolton
(2004) for the particular conditions relevant for their tests, as indicated
in Fig. 15. After crushing, the material in the shear zone is denser than
the maximum density of the original material, and the range of possible
densities has moved towards lower specific volumes.

3 Design Approaches for Shaft Capacity of Driven
Piles

A general framework for shaft resistance of driven piles in sand has been dis-
cussed by White (2005), building on the concept of friction degradation due
arising from cyclic shearing during pile installation. Examples include val-
ues of shaft friction deduced from back-analysis of pile driving performance
for the North Rankin piles (Dolwin et al., 1988; Randolph, 1988) as indi-
cated in Fig. 16. White and Lehane (2004) presented a series of centrifuge
model tests where the piles were installed either by intermittent jacking, or
by a pseudo dynamic installation method with cyclic reversals and advances
of penetration. The loss of normal stress measured at the pile-soil interface
correlated well with the number of jacking or displacement reversal cycles.

The influence of installation cycles on friction degradation is illustrated
in Fig. 17 (White, 2005) from field data on driven (high number of cycles, N)
and jacked (low number of cycles) piles. From a practical perspective, the
number of blows required to install the pile is not known a priori, and hence
it is necessary to link degradation in friction to the normalised distance
(h/D) measured from the pile tip, rather than the number of shearing cycles.

Different approaches to quantify the variation of the normal effective
stress or shaft friction have been proposed by Randolph et al. (1994) and
by Jardine and Chow (1996), although Randolph (2003a) has shown that
both approaches yield similar profiles of shaft friction. The former approach
expresses the stress ratio, K (or friction ratio, β) as an exponential function
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Figure 15. Effect of particle crushing on the specific volume range.

of h/D, ranging between a maximum value, Kmax, at the pile tip, and a
minimum value, Kmin, according to

K = Kmax − (Kmax −Kmin) e
−μh/D (7)

where the rate of degradation is controlled by the parameter, μ, which
may be taken as ∼ 0.05. Kmax may be estimated as a proportion of the
normalised cone resistance, typically 2% of qc/σ

′
v0 for closed-ended piles

reducing to 1% for open-ended piles, and Kmin lies in the range 0.2 to 0.4,
giving a minimum friction ratio, τs/σ

′
v, of 0.1 to 0.25 (Toolan et al., 1990).

Where data from a cone friction sleeve are available, the friction ratio
may be used to refine estimates of Kmax for closed-ended piles, provided an
appropriate value for the interface friction angle, δ, between cone and soil
is adopted. However, it should also be noted that data from friction sleeves
are very sensitive to wear of the sleeve, and may therefore underestimate
Kmax.

Jardine and Chow (1996) adopted a power law function of h/D, but also
allowed for dilation during subsequent shearing to failure, giving an express
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Figure 16. Mean shaft friction deduced for piles in carbonate sands at
North Rankin, North-West Shelf of Australia (after White, 2005).

for shaft friction of

τs =

(
qc
45

(
σ′
v0

pa

)0.13(
D

h

)0.38

+Δσ′
rd

)
tan δcv (8)

where pa stands for atmospheric pressure (100 kPa) and Δσ′
rd is the radial

stress change due to dilation.

For open ended piles, they suggested replacing the external diameter, D,
with the equivalent diameter, Dequiv, of a solid pile with the same volume
of steel (per unit length).

Two differences between the above two relationships should be noted.
The first expression allows for a minimum value of the stress ratio, K,
which would be approached at large values of h/D, or large numbers of
installation cycles. This is consistent with the ideas discussed earlier in
relation to CNS shear tests. The second point is that it is necessary to
stipulate a lower limit of h/D in Eq. (8) in order to avoid infinite shear
resistance. The proposed limit was h/D = 4, which corresponded to the
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Figure 17. Influence of number of stress reversal cycles on shaft friction of
displacement piles (White, 2005).

lower instrumentation cluster in the Imperial College instrumented pile.

A number of alternative methods have now been incorporated in a re-
vised commentary to the American Petroleum Institute (API, 2007) guide-
lines for the design of fixed steel structures. The approach for shaft friction,
τs, at any depth, z, may be expressed as

τs = uq̄c

(
σ′
v0

pa

)a

Ab
r

[
max

(
L− z

D
, v

)]−c

(tan δcv)
d

[
min

(
L− z

D

1

v
, 1

)]e
(9)

where σ′
v0 is the vertical effective stress, normalised by atmospheric pressure,

δcv is the steady state interface friction angle between pile and soil, q̄c is an
appropriately average value of cone resistance, L − z is distance (h) from
the tip of the pile, Ar is the area ratio for the pile, and the parameters a
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Various database studies have been conducted by the research groups
involved in the development of the methods listed in Tab. 1. Database ex-
ercises are a necessary stage in the calibration of axial pile capacity design
methods, due to the empiricism of the recommended equations. The meth-
ods listed in Tab. 1 all give broadly similar performance when compared
to the field load test measurements, which is to be expected since all were
calibrated against similar databases. There is a trend for the more recently-
developed methods to give better agreement with the current database,
partly because of having been calibrated against the more recent versions.
Typically, the database studies reveal a mean ratio of predicted to measured
capacity of 1± 0.1 with a standard deviation of ∼0.2-0.3.

The methods all adopt broadly the same form of expression for shaft
and base resistance, with some differences in the mechanisms accounted
for. However, the empirical fitting parameters differ, as shown in Tab. 1.
As a result, the methods give significantly different capacity predictions
for field scale piles - varying by up to 50%, with a scatter that depends
on the mean value and shape of the cone resistance profile and the pile
geometry. A designer can then be faced with a design load which exceeds
the capacity calculated according to one of the new design methods, but
which is acceptable according to another, even after reducing this capacity

to e, u and v are given in Tab. 1 for the three cone-based methods in the
commentary (Fugro-05: Kolk et al., 2005; Simplified ICP-05: Jardine et al.,
2005; Offshore UWA-05: Lehane et al., 2005a).

A comparison of these three methods with the traditional approach for
estimating the capacity of driven piles in sand showed significant improve-
ments in accuracy, with much lower coefficients of variation of the ratio of
predicted to measured capacity, for the current database of pile load tests
in the public domain (Lehane et al., 2005b).

Table 1. Parameter values for shaft friction estimation in Eq. (9).

Parameters

Method a b c d e u v

Fugro-05 compression 0.05 0.45 0.90 0 1 0.043 2
√
Ar

tension 0.15 0.42 0.85 0 0 0.025 2
√
Ar

Simplified ICP-05 compression 0.1 0.2 0.4 1 0 0.023 4
√
Ar

tension 0.1 0.2 0.4 1 0 0.016 4
√
Ar

Offshore UWA-05 compression 0 0.3 0.5 1 0 0.030 2
tension 0 0.3 0.5 1 0 0.022 2
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by a factor of safety based on the database statistics.
This conflict presents difficulties for designers, highlighting the need for

caution when applying these new design methods. The API Commentary
notes that “more experience is required with all these new methods before
any single one can be recommended for routine design”. A conservative
approach - perhaps overly so - would be to adopt the lesser of the capacities
predicted by each method.

4 Axial Shaft Capacity of Grouted Piles in Carbonate
Sand

It has been recognised since the early 1980s that extremely low values of
shaft friction can result for piles driven into calcareous sands, a classic ex-
ample being the piles for the North Rankin A platform on the North-West
Shelf of Australia (Poulos et al., 1988). The mechanism responsible may be
attributed to an extreme form of shaft friction degradation, as a result of
the fragile grains and high compressibility of carbonate soils.

A typical profile of cone resistance for sediments between 50 and 120 m
depth on the North-West Shelf is shown in Fig. 18. A lower bound cone
resistance in carbonate silts, with qc ∼ 0.04z MPa (with z the depth in m),
is broken up by stronger material comprising cemented calcarenite, with
cone resistance of 10 to 50 MPa. Laboratory element tests (triaxial, simple
shear) tend to reflect Nkt (the cone factor) values of about 13 but with con-
siderable scatter. Direct shear tests carried out under conditions of constant
normal stiffness show lower strengths, which is consistent with the tendency
for the material to collapse (or crush) on shearing at stress levels relevant
for pile design. Back-analysis of results from (driven) conductor tests, or
the driving records of driven piles, suggests shaft friction values of less than
10 kPa, even at depths of 100 m (see earlier, Fig. 16).

In most deposits of carbonate material, more consistently cemented
strata are encountered at depth. On the North-West Shelf, typical val-
ues of cone resistance range from 10 to 50 MPa, and design profiles based
on taking the moving average cone resistance are mostly in the range 20
to 35 MPa (see Fig. 19). Well cemented material of this nature is ideal for
foundation piles, provided good load transfer can be achieved from the pile
to the cemented sediments.
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Figure 18. Cone resistance profile in variably cemented carbonate sands
on North-West Shelf of Australia.

4.1 Grouted Pile Construction

An alternative construction technique to driven piles is the equivalent of
an onshore ‘cast in situ’ pile, referred to offshore as a ‘drilled and grouted’
pile, and comprises a steel tubular insert pile grouted into a pre-drilled hole.
The existence of uncemented sediments at shallow depth generally precludes
construction of grouted piles from the seabed surface. Instead, a primary
pile is first driven deep enough to prevent collapse of any uncemented strata.
Then, a rotary drill is advanced through the primary pile and extended to
sufficient depth to accommodate the grouted insert pile. This comprises
a steel tubular, which is lowered to the bottom of the borehole and then
the annulus between the tubular and the drilled hole is grouted, as is the
connection with the primary pile (see Fig. 20). For ease of construction, it is
simpler if the complete pile (inside and outside the tubular) is grouted, but
this can cause considerable thermal shrinkage, sufficient to fail the grout-
sediment connection. One approach to mitigate this is to fill the inside of
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the tubular with precast cement blocks, thus limiting the total volume of
grout.

Figure 19. Cone resistance profile in deeper, more cemented, carbonate
material on North-West Shelf of Australia.

Typical dimensions are illustrated on Fig. 21. The primary pile will gen-
erally be 2.5 to 2.8 m in diameter, and may extend as deep as 120 m. The
drilled borehole will need to leave sufficient clearance between the drill bit
and the inside of the primary pile, to give an external diameter of 2 to 2.3
m. The tubular should be sized to allow a grout annulus of around 150
mm. Note that the length for this type of pile may be as much as 180 m.
Weld beads are used on the outside of the tubular insert and inside of the
primary pile at its lower end, in order to ensure adequate load transfer to
the grout.

A modified form of construction, the ‘grouted driven pile’, where a pipe
pile is first driven to full penetration and then grout is forced out through
pre-installed valves (Rickman and Barthelemy, 1988) has never been pur-
sued in spite of apparent economic advantages in reduced construction costs;
the main obstacle has been a suitable means of assuring the quality of the
grouting process.

Drilled and grouted construction achieves pile installation without the
destructive processes of pile driving. Any temporary loss in effective stress
in the ground is assumed to be (largely) recovered by means of the head of
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Figure 20. Construction of offshore grouted insert pile.

Figure 21. Typical dimensions of a drilled and grouted insert pile.

grout during the grouting operation. In addition, inevitable roughness of
the drilled hole will encourage initial increases in the horizontal stresses as
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the pile is brought to failure.
For onshore design of rock-socketed piles, it is customary to correlate the

shaft friction with the unconfined compression strength, qu, of the rock, or
equivalent shear strength, su = qu/2 (Kulhawy and Phoon, 1993; Randolph
et al., 1998). The correlation parameter has been shown to depend on
the roughness of the socket, but also reduces with increasing pile diameter
(Seidel and Haberfield, 1995).

In offshore design, there has been a tendency to correlate peak shaft
friction with the cone resistance. Correlations have been developed through
a combination of field data and laboratory tests. The two most common
laboratory tests are (a) rod shear tests (essentially a model pile test, Jewell
and Randolph, 1988), and (b) constant normal stiffness (CNS) direct shear
tests (Johnston et al., 1987). The principal of the latter test is that it
simulates the changes in normal stress that accompany volumetric expansion
or collapse of the material in the shear zone surrounding the pile.

Typical correlations from model pile tests showing a decreasing trend
with increasing cone resistance, as (Fig. 22):

τp
qc

≈ 0.02 + 0.2e−0.04qc/pa (10)

but with the asymptotic ratio of 0.02 varying in the range 0.02 to 0.04
(Abbs, 1992; Joer and Randolph, 1994). The asymptotic range applies once
the cone resistance exceeds about 10 MPa.

Correlations of peak shaft friction such as in Eq. (10) have been devel-
oped from a variety of laboratory and field load tests. Since field tests are
mostly not feasible with the budget and time constraints of a project, it
is necessary to rely on laboratory testing to establish drilled and grouted
design parameters, not just for the peak shaft friction, but also for values
of residual shaft friction and the shape of the transition from peak to resid-
ual. The constant normal stiffness (CNS) shear test is the obvious choice,
given its simplicity and the limited amount of material required, although
in earlier work rod shear tests were also used extensively. On average the
CNS tended to give lower values of peak shear stress, and thus provide a
more conservative approach for design.

4.2 Response to Cyclic Loading

Under monotonic displacement, piles grouted into cemented carbonate soils
exhibit a very brittle reduction in shear resistance, and this appears to
degrade gradually over a considerable displacement (Fig. 23).

Under cyclic displacements, a very low shear resistance is measured, in
some cases as low as 1% of the peak shear stress. The low shear resistance
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Figure 22. Correlation of shaft friction with cone resistance for cemented
sediments (Joer and Randolph, 1994).

extends through the major portion of the displacement range over which
failure has been reached. This has often been referred to as a ‘gap’ zone
(analogous to the physical gap that might appear around a pile loaded
laterally). On emerging from this ‘gap’ zone, the shear resistance builds
back up towards the monotonic backbone curve, but with a lower failure
shear stress, reflecting the additional plastic shearing within the cyclic gap
zone.

Figure 23. Typical response from rod shear test in calcarenite.
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Figure 24. Rod shear test response to one-way cyclic loading.

Pre-failure cyclic loading can also lead to accumulation of displacement
(assuming a bias, rather than purely symmetric 2-way cycles) and ultimately
failure (Fig. 24). Relatively high shear stress levels, as a proportion of the
monotonic resistance, are required for such failure. However, such high lev-
els can occur in the upper portion of a grouted pile, since elastic compression
of the pile shaft will lead to initial concentration of load transfer near the
pile head.

The brittleness of cemented carbonate sediments such as calcarenite and
calcisiltite, and the vulnerability to damage during cyclic shearing, leads to
the potential for progressive failure of axially loaded piles. Under monotonic
loading, failure will occur near the pile head and propagate downwards, so
that the maximum pile load that may be mobilised is much less than the
ideal capacity of a rigid pile. The challenge is to quantify the strain softening
behaviour from appropriately devised monotonic and cyclic laboratory shear
tests.

4.3 Field Grouted Pile Tests

Two key programmes of grouted pile tests were conducted at a site in South
Australia near Overland Corner, to provide field-scale data from which to
evaluate design parameters and calibrate analysis tools (Randolph et al.,
1996). The first programme, in 1987 to 1988, was undertaken to under-
pin the design of grouted insert piles for the Goodwyn A platform on the
North-West Shelf of Australia. The programme was based around tests on
a number of short pile segments, ranging in diameter from 0.4 to 2 m, but
also included one 15 m long pile (0.4 m in diameter) in order to explore the
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potential for progressive failure under cyclic loading (see Fig. 25). A second
programme of tests in 1988 addressed grouted driven piles, 0.4 and 0.95 m
in diameter and 10 m long; these tests proved the concept but without the
construction technique ever having been taken up in practice.

Figure 25. Program of field grouted pile tests at Overland Corner, SA.

Table 2. Summary of geotechnical parameters for Overland Corner, SA.

Parameter Range of values Comments

Cone resistance, qc (MPa) 10 - 18 Average of 14 MPa

Grouted anchors, τp (kPa) 526 - 614 Residual: 25 - 40% of peak

Hydraulic fracture, pf (kPa) 1600 - 2300 Overburden: 500 - 800 kPa

Pressuremeter modulus, Gur (MPa) > 350 Limited by compliance

Pressuremeter strength, su (kPa) 600 - 700

CNS shear box tests, τp (kPa) 160 - 320 Residual: 50 - 100 kPa

Rod shear tests, τp (kPa) 300 - 600 Residual: 100 - 300 kPa

Tab. 2 provides a summary of key geotechnical parameters for the Over-
land Corner limestone. The average cone resistance was around 14 MPa,
and the average peak shear stress ranged from 240 kPa (CNS) to 450 kPa
(rod shear) and 570 kPa (small diameter grouted anchor rods in the field).
Pressuremeter tests provided data on the unload-reload modulus from which
to assess appropriate stiffness values for CNS testing.
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Figure 26. Monotonic loading response of grouted sections.

The response of the grouted sections under monotonic loading showed
a marked effect of diameter (see Fig. 26). The peak shaft friction ranged
from 440 kPa for the smallest diameter, down to 310 kPa for the largest
diameter. This variation is consistent with the concept of constant normal
stiffness of the response at the pile-soil interface (and as simulated in CNS
tests). The more ductile response of the largest pile segment appeared to
be carried through into the post-peak region, with less obvious degradation
in resistance. However, that evidence should be treated with caution, as
the largest diameter segment was also the shortest (in terms of length to
diameter ratio), and so increasing end resistance (even though a soft base
was incorporated) may have contributed to the sustained resistance.

Limiting values of shaft friction from the various grouted pile tests ranged
from 310 kPa up to over 600 kPa (the smaller diameter grouted driven pile)
(Fig. 27). As a ratio of the cone resistance, the peak shaft friction values
ranged from around 2.5% to over 4%.

5 Non-Linear Load Transfer Analysis - RATZ

Numerical analysis is required in order to evaluate the pile response under
typical operating conditions, which must consider extreme events, such as
1 in 1000 or 1 in 10,000 return period cyclonic storms, but also the accu-
mulation of damage during a 30 year operating life. For design purposes, a
simplified analysis approach is generally adopted, with the pile modelled as
an elastic column (using a finite difference or finite element approach, with
the pile discretised into elements) and interaction with the soil captured by
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Figure 27. Strengths and peak shaft friction measured at Overland Corner,
SA.

discrete ‘load transfer’ springs attached to each pile element.
In clay soils, quite simple load transfer curves are adopted, with a non-

linear pre-peak curve that closes matches an inverted parabola, and mild
strain softening by up to 30% (e.g. API, 2007). It is relatively uncommon
to carry out detailed analysis of the cyclic response for driven piles in clay,
with the possible exception of piles anchoring tension leg platforms, where
the consequence of failure is severe.

Figure 28. Form of axial load transfer curve in RATZ.
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For grouted piles in carbonate soils, however, cycle-by-cycle analysis of
piles subjected to storm loading has become routine, and software such as
RATZ (Randolph, 2003b) have been specifically calibrated against the field
tests at Overland Corner. The general form of load transfer response imple-
mented in RATZ is illustrated in Fig. 28. The monotonic response comprises
an initial elastic response up to ξτp, followed by an inverted parabola (with
apex at the peak) to failure. The post-peak response to the residual shaft
friction, τr, is captured by a two parameter exponential decay curve:

τf = τp − 1.1 (τp − τr)
[
1− e2.4(Δw/Δwres)

η
]

(11)

The two parameters dictate the relative abruptness of the initial decay (η),
and the additional displacement to reach residual conditions (Δwres). Val-
ues of η less than unity lead to an abrupt change of gradient, with initial
infinitely steep decay, at the peak.

Modelling of the low residual cyclic resistance within the so-called gap
zone is achieved by nominating a low shaft friction, τcr, within the plastic
region (defined by extrapolating from the displacement at peak friction as
indicated) and an abrupt recovery to the current failure shaft friction on
emerging from the gap zone.

Pre-failure cyclic loading is modelled using a form of kinematic harden-
ing, similar to a bubble model, where the stress at which yield would occur
on reversal of loading tracks behind the minimum (i.e. current) shear stress
according to Fig. 29:

τy = τmin + 0.5 (1 + ξ) (τp − τmin) (12)

This formulation leads to well-defined shakedown limits for 1-way load-
ing (where τmin is zero) of elastic τelastic ≤ 0.5 (1 + ξ) τp and 2-way load-
ing (where τmin is the negative of the elastic limit) of elastic τelastic ≤
(1 + ξ) τp/ (3− ξ).

The relationship in Eq. (12) and the resulting variation of the safe cyclic
range is similar to that proposed for metals by Goodman, and is shown in
Fig. 30 in the form of a conventional cyclic stability diagram, where the
yield criterion becomes a straight line (shown for ξ = 0.333). The minimum
1-way and 2-way cyclic amplitudes for which purely elastic response would
result are obtained with ξ = 0, giving τcyc/τp = ±0.25 and ±0.33 respec-
tively.
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Figure 29. RATZ load transfer response under 1-way and 2-way cyclic
loading.

Figure 30. Example cyclic stability diagrams simulated using RATZ.

Two other cyclic algorithms are provided in RATZ, one more conserva-
tive where the minimum yield stress is reduced to ξτp, and one less conserva-
tive that corresponds to the Gerber criterion used in metal fatigue studies,
which is equivalent to the parabolic curve shown in Fig. 30.

Calibration of the load transfer algorithm in RATZ has been undertaken
in respect of element (CNS and rod shear) tests and also in comparison
with the field tests at Overland Corner. Fig. 31 shows a comparison of
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Figure 31. Fatigue curves predicted by RATZ load transfer algorithm.

the ‘fatigue life’ predicted using the pre-failure cyclic algorithm described
above with results from 1-way and 2-way cyclic element tests. Reasonable
consistency may be observed, in spite of some scatter in the experimental
data. The trend for 2-way cyclic loading may be expressed approximately
as

Nfailure ≈
(
τcyc
τp

)−7

(13)

A comparison of the predicted response of a grouted segment test sub-
jected to large displacement cycles is shown in Fig. 32. The RATZ simu-
lation captures the essence of the measured response, but in a somewhat
crude form, with abrupt changes in resistance at the extremes of the cyclic
range, and a constant cyclic residual resistance. Improvements in the algo-
rithm are discussed later.

A similar comparison for the full (15 m long) pile tested at Overland
Corner is shown in Fig. 33, focusing on failure of the pile under increasing
levels of cyclic loading. The simulation matches the measured response well,
particularly in respect of the onset of failure.

The concentration of load transfer in the upper part of (compressible)
piles at low load levels, and the gradual mobilisation of shaft resistance fur-
ther down the pile as the load is increased and failure starts to propagate
down the pile, are illustrated in Fig. 34 for the first three stages of cyclic
loading of the 15 m long pile referred to above. The field test was instru-
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Figure 32. Modelling response of 0.44 m diameter grouted section test.

Figure 33. Simulation of cyclic response of 15 m long grouted section.

mented to reveal the profile of load in the pile, and the analysis matches
the measured data well.
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Figure 34. Load distributions at different stages of cyclic loading for 15 m
long grouted section at Overland Corner, SA.

5.1 Improved Cyclic Algorithms - Cyclops

Continuing expansion of the offshore oil and gas industry in Australia,
and increasingly arduous design requirements for drilled and grouted in-
sert piles, has prompted further refinement of the cyclic load transfer algo-
rithms, resulting in the software Cyclops (Advanced Geomechanics, 2007).
Few projects can justify the high cost (in the region of US$10 million) of
site specific pile load tests, so projects must rely primarily on laboratory
(principally CNS) test data and correlations with the cone resistance profile.

Monotonic and cyclic CNS tests, with particular focus on fixed displace-
ment cyclic tests at increasing displacement amplitudes, allow correlations
to be developed for the peak and residual shaft friction in relation to the
cone resistance, qc. Fitting of the cyclic tests allows adjustment of the in-
ternal cyclic load transfer parameters, but a significant difficulty remains in
respect of scaling of displacements between laboratory and field. Experience
from the field tests conducted at Overland Corner still underpins choice of
appropriate post-peak displacement to reach residual conditions.

Another aspect of modern design that has required careful consideration
is how to capture the effect of the many millions of load cycles that a pile
would be subjected to during its operational life. The approach that has
been taken includes:

• modelling extreme events (such as a 1 in 10,000 year cyclonic storm)
in detail;
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• establishing a threshold level of cyclic loading that causes no further
degradation in shaft resistance;

• modelling 30-year life environmental loading for levels exceeding that
threshold.

Analysis software must be capable of simulating many thousands of load
cycles (for example, up to 50,000 cycles) and retain numerical stability.
Hand in hand with the approach of undertaking cycle-by-cycle analysis is
the need to refine the cyclic algorithm, particularly in respect of the response
in the plastic ‘gap’ zone, and the transition region as the soil element is
sheared beyond that zone.

An overview of the load transfer algorithm in Cyclops is shown in Fig. 35.
The algorithm within the gap zone simulates a non-linear S-shaped response,
with the maximum shear stress mobilised at the extremes of the zone ex-
pressed in terms of a bias parameter, b, representing the proportion of the
current failure shear stress (typically < 0.5). The value of the bias param-
eter may be taken as constant, or may decrease within the first few cycles,
as is typically seen in CNS test data. Beyond the gap zone, a transitional
region allows the shear resistance to increase back to the current failure
level, allowing for degradation that has occurred due to plastic displace-
ment within the cyclic gap zone.

A feature of the monotonic degradation curve expressed in Eq. (11) is
that, for values of the shape parameter, η, less than unity, there is an
abrupt change of gradient at peak Fig. 36. This can give rise to numerical
instability, which is ameliorated by introducing a smooth transition to the
required degradation curve. The displacement over which this occurs can be
adjusted, but is usually set so that it the main degradation curve is rejoined
within about 5% of the displacement to peak.

An example response from the refined cyclic algorithm within the gap
zone, and the transition beyond it, is shown in Fig. 37. The proportion of
the current failure shear stress that is mobilised at the extremes of the gap
zone gradually decreases with increasing number of cycles, and a smooth
response within and beyond the gap zone is ensured.
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Figure 35. Summary of load transfer algorithm features in Cyclops.

Figure 36. Smoothing of immediate post-peak response in Cyclops.
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Figure 37. Simulation of typical CNS shearing response.

5.2 Calibration Against Laboratory and Field Data

Fig. 38 shows the results of a CNS test where a series of post-failure cyclic
displacements of ±5 mm have been applied. The data have then been fitted
by simulating the element test using the pile analysis software, Cyclops.
The left hand plot shows the actual shear stress-displacement response,
while the right hand plot shows the match to the gradual reduction in the
shear resistance mobilised at the extreme of each cycle. Adopting a varying
bias provides improved simulation of the test data. After the 25 cycles, the
sample was subjected to further monotonic shearing up to the limits of the
apparatus. The load transfer fit includes modelling of the transition back
to the monotonic shearing curve.

Simulation of the complete response from one of the grouted segment
tests at Overland Corner is shown in Fig. 39. Three simulation curves are
shown for different combinations of the displacement to residual, Δwres,
and the shape parameter, η. All three response curves provide a reasonable
match, and the approach has been to adopt as low a value of Δwres (and
the corresponding η) that preserves a good match, in this case taking Δwres

as 0.5 m in order to match the initial post-peak response.
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Figure 38. Matching of CNS test data with Cyclops.

Figure 39. Simulation of complete grouted section test from Overland
Corner, SA.
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6 Example Design Analysis for Grouted Insert Pile

A typical design storm may comprise several thousand load cycles, with
a peak load that is perhaps 3 times the ambient (calm sea) load on the
pile. The majority of load cycles will be less than 70% of the peak, with
only 3 or 4 cycles exceeding that level (Fig. 40). In order to establish a
suitable threshold for the 30-year lifetime loading, the extreme design storm
is applied first, after which constant amplitude load cycles (symmetric 2-
way about the ambient load) are applied at increasing levels until further
degradation occurs. That level represents the cyclic threshold, which in
the present example corresponds to about 4% of the extreme design load,
or 11% of the maximum cyclic amplitude in the extreme event. The cyclic
threshold reduces the number of load cycles that need to be considered from
over 150 million to a more manageable 13,500.

Figure 40. Typical 10,000 year storm loading spectrum.

An example of the resulting response of a drilled and grouted pile un-
der monotonic and cyclic loading is shown in Fig. 41, taken from an actual
design study. The load, P , has been normalised by the ideal ‘rigid pile’ ca-
pacity, Qr, while the displacement is normalised by the diameter, as w/D.
It may be seen that the peak monotonic capacity is only 64% of the rigid
pile capacity because of progressive failure. Following cyclic loading to sim-
ulate the design storm, plus a full 30-year ‘lifetime cycle’ of more moderate
environmental loading, the pile capacity is further reduced, to just over 50%



www.manaraa.com

520 M. Randolph

of the ideal capacity. This compares with the peak design load, which is
just under 40%, indicating a reserve strength ratio of about 1.2.

Fig. 42 shows the pattern of degradation of shaft friction at the end of
the cyclic loading stages. The upper part of the pile, down to just over 50%
of the grouted length, has been reduced to residual shaft friction, while the
bottom 36% has suffered no degradation. The transition zone over which
partial degradation has occurred is therefore around 14% of the grouted
length of the pile.

Figure 41. Example analysis showing effects of cyclic loading on pile ca-
pacity.

From a design perspective, it is important to establish the robustness
of such calculations. This may be achieved from a numerical viewpoint by
varying the control parameters in the numerical algorithm, which follows an
explicit integration approach. From a geotechnical viewpoint, parameters
have to be chosen with a reasonable degree of conservatism, and the sensi-
tivity of the results to variations in the parameters assessed. The various
parameters are usually viewed against a background of the cone resistance
profile for the site in question, not because of an expectation of any pre-
cise correlation for each parameter with the cone resistance, but in order
to gauge whether extremes of the parameters deduced for each layer reflect
extremes in the cone resistance, or whether other patterns emerge.
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Figure 42. Profile of shaft friction following cyclic loading.

7 Summary

For practical offshore design, the effects of cyclic loading are generally based
on estimating cumulative ‘permanent’ and cyclic shear strains, and cumula-
tive excess pore pressure, from cyclic triaxial and simple shear tests. Simple
shear tests are favoured over triaxial tests because of the small sample size,
greater flexibility in the applied shear stress regimes and because they rep-
resent average stress paths well.

The shaft friction mobilised along piles driven into sand degrades with
distance from the pile tip or, more accurately, the number of shearing cycles
imposed on the particular zone of soil during pile installation. Degradation
may be expressed by expressing the shaft friction either as a proportion
of the vertical effective stress or, in order to allow for variations in sand
density, as a proportion of the local cone resistance.

Quantitative studies of the mechanism of friction degradation have been
undertaken through cyclic direct shear tests conducted under constant nor-
mal stiffness (CNS) conditions. These results show cyclic dilation and con-
traction within each cycle, but a net accumulation of contraction within a
shear band for 5 to 8 particles wide. Some grain crushing occurs during
this process, but probably much less than would occur in the real (pile)
situation, where significant crushing occurs under the high tip pressures.

A prediction model based on an assumed path in void ratio - normal
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effective stress space provides a reasonable fit to the CNS data, and suggests
that there should be a stable minimum shaft friction after many shearing
cycles (or large normalised distance from the pile shaft).

Modern design methods for pile shaft friction are based on the cone resis-
tance profile, and incorporate friction degradation as a power law function
of the normalised distance measured upwards from the pile tip. These do
not include an explicit minimum value of shaft friction, and this needs to
be addressed in future work.

Grouted piles provide significantly higher shaft capacity in carbonate
sediments compared with driven piles, with peak shaft friction in the range
2 to 4% of the cone resistance, compared with potentially less than 10
kPa for driven piles. An interesting phenomenon during post-peak cyclic
displacement is the extremely low cyclic residual friction within the current
plastic (or ‘gap’) zone. The resistance increases again once shearing occurs
beyond that zone. Very similar responses of this nature are observed in
laboratory tests (rod shear and CNS tests) and also in field tests on grouted
pile segments.

The state-of-the-art for grouted pile design involves cycle-by-cycle anal-
ysis of extreme storm events and the life-time environmental loading on
the piles. This is achieved through non-linear load transfer analysis with
the load transfer algorithms validated and calibrated against tests at field
scale. Refinement of the algorithms over the last 20 years has allowed close
simulation of field tests and laboratory CNS test data.

Site specific design parameters may be obtained by matching the re-
sponse from CNS tests, correlating peak and residual shaft friction with the
cone resistance profile, and adjusting internal variables in the load transfer
algorithm to match the cyclic data.

Uncertainty still exists in scaling displacements (particularly the post-
peak rate of strain-softening) from laboratory to field. Adopting displace-
ments to residual directly from measurements at laboratory scale (i.e. 20
mm or less) would be excessively conservative. The field data suggest that a
lower limit of about 0.5 m is more reasonable, while still on the conservative
side.
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List of Symbols

0 initial state §1, §2
min minimum value §2, §3
max maximum value §2, §3
a parameter §3
Ar area ratio for the pile §3
b parameter §3
c parameter §3
d parameter §3
d50 mean particle diameter §1, §2
D diameter of the pile §1, §3, §6
Dequiv equivalent diameter §3
e parameter §3
e void ratio §2.1
esb void ratio of the interface shear band §2.1
esb(N) shear band void ratio at cycle N §2.1
f parameter §3
G shear modulus of the soil §1
h distance from the pile tip §1, §3
hs shear band thickness §2.1
Δh cumulative interface contraction §2.1
k CNS spring stiffness §2
K stress ratio §1, §3
L = z + h §3
N number of cycles §2.1, §3
Nchar characteristic number of cycles §2.1
Nkt cone factor §2.1, §4
p′ mean pressure §2.1
pa atmospheric pressure §3, §4.1
P load §6
qc cone resistance §1, §3, §4, §5



www.manaraa.com

Cyc. Interface Shearing in Sand and Cemented Soils 525

q̄c average cone resistance §3
qu unconfined compression strength §4.1
Qr ideal ‘rigid pile’ capacity §6
su shear strength §4.1
u parameter §3
v parameter §3
v specific volume §2.1
w displacement §5, §6
Δwres displacement to reach residual conditions §5
z depth §3
β = K tan δ friction ratio §1, §2, §3
δ interface friction angle §1, §3
δcv steady state interface friction angle §3
η shape parameter §5
μ parameter controlling the rate of degradation of K §3
ξ initial elastic response factor §5
σn normal stress §2
σ′
n normal effective stress §1, §2

σ′
v effective vertical stress §3

σ′
v0 in situ effective vertical stress §1, §3

Δσ′
rd radial stress change due to dilation §3

τcr low shaft friction within the plastic region §5
τcyc cyclic shaft friction §5
τelastic elastic shaft friction §5
τf post-peak residual shaft friction §5
τp peak shaft friction §4.1
τr residual shaft friction §5
τs shaft friction §1, §3
φcv critical state angle of friction §1
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1 Introduction

Quantifying the sensitivity of fine grained sediments is an important aspect
of site characterisation. The sensitivity gives an indication of the likely
effects of pre-peak cyclic loading, while the remoulded undrained shear
strength is directly relevant for various offshore applications (see examples
in Fig. 1). It is customary to assume that the shaft friction acting dur-
ing the installation of piles, suction caissons or anchors may be taken as
the remoulded undrained shear strength (Semple and Gemeinhardt, 1981).
Equally the cyclic bearing resistance of laterally loaded piles or pipelines
and catenary riser systems may be expressed in terms of the remoulded
shear strength of the seabed sediments at shallow depth. A further example
is for the operative strength of material in debris resulting from a subma-
rine slide, which may also be estimated directly from the remoulded shear
strength.

The implicit assumption is that the water content of the sediments are
not changed during the particular design application (which may not be
true in some cases), so that the remoulding merely destroys any bonding
and other natural structure of the material.

Natural soils show rate-dependent shear strength and also a reduction
in strength as they are sheared and remoulded. Different design applica-
tions involve varying degrees of these factors, and it is useful to consider
a schematic ‘map’ of soil tests and design applications (Fig. 2) in respect
of strain rates and degree of soil remoulding involved in the application
(Randolph et al., 2007).
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Figure 1. Example applications of remoulded shear strength.

The remoulded undrained shear strength (su,rem) may be estimated from
indirect measurements such as by means of field penetrometer tests, by
direct measurement such as in a field vane test or laboratory element test
on remoulded material, or by correlation with the intact shear strength (su)
by means of a sensitivity (St). However, because of strain rates that may
vary by several orders of magnitude between different forms of soil test and
different applications, the use of a (fixed) sensitivity can be very misleading.

2 Measurement of Remoulded Shear Strength

The most common methods of estimating the remoulded shear strength of
fine-grained sediments (i.e. those where the water content will typically
remain constant during the remoulding process) include:

1. unconsolidated undrained (UU) triaxial tests on remoulded material;
2. field or laboratory vane shear tests, carried out to sufficiently large

rotations of the vane;
3. fall cone tests on remoulded material; and
4. sleeve friction (fs) from cone penetration tests.

More recently, full-flow (T-bar and ball) penetrometers have become to
be used widely in the offshore industry, particularly at the shallow depths
relevant for pipeline design and for shallow anchoring systems, where the
penetration resistance for remoulded conditions is measured following typi-
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Figure 2. Map of different soil tests and design applications.

cally 10 cycles of penetrating and extracting the probe over a short interval.
These tests are discussed in detail later in this chapter.

The different forms of test listed above are in approximate order of (typ-
ical) strain rates for the tests, which range from ∼ 10−4 s−1 (UU), 10−1

s−1 (vane), 10-30 s−1 (fall cone) and 40 s−1 (cone sleeve friction). These
span 5 or 6 orders of magnitude, and thus may be expected to yield rather
different values of remoulded shear strength. Typical rates of strain rate de-
pendency are around 10 to 15% per log cycle (see Fig. 3), with a tendency
for increased rate dependency at high strain rates (Biscontin and Pestana,
2001; Andersen et al., 2008).

At face value, the cone sleeve friction is an attractive method to evalu-
ate the remoulded shear strength in order to estimate the shaft friction for
installation of piles and other cylindrical objects. However, friction sleeve
data from cone tests are notoriously inconsistent and current recommenda-
tions are not to rely on such data (Lunne and Andersen, 2007). The very
high strain rates associated with frictional resistance on the cone sleeve,
with the cone penetrating at 0.5 diameters per second, are perhaps not ap-
preciated. Even where the cone sleeve data are reliable, the measurements
might be applicable to the dynamic conditions of pile installation (transient
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velocities of the order of 1 diameter per second), but much less so for suction
caisson installation where typical installation rates would be three orders of
magnitude lower (e.g. 1 to 3 diameters per hour).

The field vane shear test is used widely in some offshore regions, in partic-
ular in the Gulf of Mexico where its use far exceeds cone penetration testing
(Quiros and Young, 1988). In typical offshore practice, the vane is pushed
to the required depth at a rate of 20 mm/s and then left for no more than
5 minutes before being rotated at 0.1 or 0.2◦/s. The remoulded strength is
measured using a similar procedure after the vane is rotated for up to one
revolution at a rotation rate of 0.6◦/s. This remoulding rotation, which is
limited by time constraints because of the high costs of offshore vessel hire,
is significantly less than the ten turns recommended for onshore practice
and hence will overestimate the remoulded strength and underestimate the
sensitivity.

Figure 3. Laboratory data showing effect of strain rate on shear strength
(Andersen et al., 2008).

Laboratory UU and fall cone tests carried out on remoulded material are
often used to evaluate the remoulded shear strength. The two tests cover
the extremes of strain rate, and hence should not be expected to provide the
same value of shear strength, except that the fall cone test result has often
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been correlated against UU (and other low strain rate) test data (Hansbo,
1957; Karlsson, 1961; Wood, 1985). Often though, the fall cone is used to
provide measurements of the sensitivity, by comparing deduced strengths
for intact and remoulded specimens. This eliminates the uncertainty over
the calibration constant for the fall cone shear strength, although does not
lead to a specific value for the remoulded shear strength.

3 Full-Flow Penetrometer Testing

Over the last decade, increasing offshore use has been made of penetrometers
with an enlarged tip, in particular cylindrical T-bar (Stewart and Randolph,
1994; Randolph et al., 1998) and ball (Peuchen et al., 2005; Kelleher and
Randolph, 2005) penetrometers (see Fig. 4). Projected areas of the tips are
generally about 10 times that of the shaft behind the tip, so T-bar of 40 mm
diameter by 250 mm long, and ball of ∼80 mm diameter attached to a stub
shaft of 25 mm diameter (Peuchen et al., 2005), or alternatively 113 mm
diameter attached directly to the cone shaft (35.7 mm diameter) (Chung
and Randolph, 2004).

A key aspect of full-flow penetrometers, apart from their simple geom-
etry, which allows direct calculation of resistance factors, is the ability to
carry out cyclic tests comprising (typically) 10 cycles of penetration and
extraction over a short depth range of 0.5 to 1 m. This allows direct mea-
surement of penetration resistance under remoulded conditions, and hence
the remoulded shear strength. The extraction resistance is monitored in
addition to the penetration resistance, as the ratio of qout/qin provides a
first measure of the consistency of the data and of the sensitivity of the
sediments (Fig. 5).

Cyclic testing can also reveal errors in the testing, for example due to
load cell drift caused by temperature changes between the deck of the site
investigation vessel and the seabed. The cyclic penetration and extraction
resistances should become essentially symmetric about zero, allowing ad-
justment of the load cell zero (which can be significant in some cases, see
example data in Fig. 6.

The advent of full-flow penetrometers has allowed a more thoughtful
approach to in situ testing. As will be clear later, interpretation of the
penetration resistance (for both intact and remoulded conditions) requires
separation of the effects of strain rate dependency of shear strength from
those of partial softening (remoulding). These effects can be quantified by
planning the test appropriately, including varying the penetration rate in
order to quantify strain rate dependency (and even consolidation charac-
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Figure 4. Schematic of cone, T-bar and ball penetrometers. Note: su is
the shear strength; qt and q the total and net bearing resistance; σv the
total overburden stress and Nk the various bearing factors.

Figure 5. Example offshore data from T-bar penetrometer tests.

teristics if the rate can be reduced sufficiently for the given soil type), and
carrying out cyclic tests in order to evaluate - and ultimately eliminate - the
effects of softening with each passage of the probe. Potential ways in which
field penetrometer tests can be designed in order to optimise measured data
are indicated on Fig. 7.
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Figure 6. Data from cyclic T-bar penetrometer tests.

Figure 7. Design of field tests to optimise application of measured data.

Field data from penetrometer tests carried out in lightly overconsolidated
estuarine clay at Burswood, Western Australia show remarkably similar
penetration and extraction profiles for a variety of different penetrometer
shapes (Fig. 8). The clay has sensitivity measured from vane shear tests
mostly around 4, but with some layers showing sensitivity as high as 10.
The ratio of extraction resistance to penetration resistance is reasonably
uniform at around 0.6, indicating that the soil is not fully remoulded lo-
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cally during a single pass of the penetrometer.

(a) (b)

Figure 8. Different penetrometer shapes (a) and resulting penetration and
extraction profiles (b) (Chung and Randolph, 2004).

(a) (b)

Figure 9. Cyclic penetrometer data: (a) T-bar test at 14 m depth; and (b)
degradation curves (b) (Chung and Randolph, 2004).

Cyclic full-flow penetrometer tests show that most degradation occurs
over the first 5 to 10 cycles of penetration and extraction, and the recom-
mendation for cyclic tests is to standardise on 10 cycles. Data from different
penetrometers show very similar trends (Fig. 9), and the final degradation
factor (ratio of post-cyclic penetration resistance to the initial penetration
resistance) is less than the inverse of the soil sensitivity.
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The discrepancy between what might be called the ‘penetration resis-
tance sensitivity’ and the soil sensitivity, St, appears to become more pro-
nounced as the soil sensitivity increases (Fig. 10).

Figure 10. Cyclic degradation curves in high sensitivity clays (Yafrate
et al., 2009).

Field cyclic penetrometer tests provide a measurement of the penetration
resistance in remoulded soil, which may be used directly in certain design
situations. In other applications, however, it is more convenient to eval-
uate a remoulded shear strength, and that requires use of an appropriate
resistance factor, Nrem, so that the remoulded shear strength is obtained
from

su,rem =
qrem
Nrem

∼ qn=10

Nrem
(1)

Field data for the resistance factor, Nrem, calculated with respect to field
vane tests following remoulding of the soil, indicate that the value of Nrem

increases with the sensitivity of the soil according to

Nrem ≈ Nk +
ΔNk

(1 + St/f)
−3 (2)
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Figure 11. Variation of resistance factor for remoulded conditions (Equa-
tions and data from Yafrate et al., 2009).

where Nk is the value for intact conditions for soils of low sensitivity (and
hence also applies for remoulded conditions) typically 12 to 13, ΔNk is
the maximum increase for highly sensitive soils (range of 5.5 to 7.5 for
the two curves marked as Equation 11 and Equation 12 in Fig. 11, from
Yafrate et al., 2009), and the factor f , which determines the mid-point
of the S-shaped fits, is around 6 to 8. The reasons for this transition in
Nrem have been explored further by means of numerical analysis of full-flow
penetrometers, as discussed below.

4 Numerical Modelling of Full-Flow Penetrometers

The relatively simple geometry of T-bar and ball penetrometer, by com-
parison with the cone, has allowed much more sophisticated analysis of the
response, with the aim of avoiding reliance on purely empirical correlations
to obtain resistance factors, Nk. Building on plasticity solutions, which give
very tight bounds on the resistance factors (Randolph et al., 2000; Martin
and Randolph, 2006), secondary features such as the strain rate depen-
dence of shear strength and strength degradation due to remoulding have
been incorporated in the solutions (Einav and Randolph, 2005).

Extensive finite element analyses have been undertaken using a large
deformation approach that allows penetrations of several diameters to be
simulated. A comprehensive description of the methodology and modelling
details has been given by Zhou and Randolph (2007, 2009a,b), where the
robustness of the method was also demonstrated.
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The LDFE (large deformation finite element) analysis is implemented us-
ing the RITSS approach (remeshing and interpolation with small strain: Hu
and Randolph, 1998), which falls in the category of ‘Arbitrary Lagrangian-
Eulerian’ (ALE) methods. The whole process consists of a series of small-
strain analysis increments, followed by remeshing, and then interpolation of
the field quantities (stresses and material properties) on the Gauss points
from the old mesh to the new mesh (Fig. 12). The sequence of small-strain
increments, remeshing and interpolation can be repeated until the required
displacement has been reached. In remeshing step a partial remeshing tech-
nique (Zhou and Randolph, 2009b) was adopted to facilitate interpolation
operations, where only part of the domain (region near the T-bar or ball) was
re-discretised, while for the remainder the nodal coordinates were merely
updated according to the displacements. This approach limits numerical
diffusion of the solution.

Figure 12. Flow chart for large deformation finite element analysis (Hu
and Randolph, 1998).

4.1 Strain Rate-Dependent and Strain-Softening Model

When simulating cyclic penetration and extraction of the shafted ball pen-
etrometer in strain rate-dependent and strain-softening soil, a simple modi-
fied elastic-perfectly plastic Tresca model was adopted, following Einav and
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Randolph (2005). The undrained shear strength at individual Gauss points
is modified according to the current rate of maximum shear strain and ac-
cumulated absolute plastic shear strain, given by

su =

[
1 + μ log

(
max (|γ̇max| , γ̇ref)

γ̇ref

)] [
δrem + (1− δrem) e

−3ξ/ξ95
]
su0 (3)

where the first bracketed term represents the enhancement due to high strain
rates relative to a reference value (here taken as 1%/hour, or 3×10−6 s−1),
following a logarithmic law with a rate parameter, μ. The maximum shear
strain rate, γ̇max, is defined as:

γ̇max =
Δε1 −Δε3

nΔt
(4)

where Δε1 and Δε3 are the cumulative major and minor principal strains,
respectively, over the n increments (between remeshing steps). The notional
time period, Δt, for each increment may be written as

Δt =
δ/d

vp/dfield
(5)

where δ is the specified displacement for each increment, d and dfield are
respectively the penetrometer diameters in the FE computations and field
tests (80 mm for the ball), and vp is the penetration rate in field (20 mm/s).

The second term models the strength degradation from the intact con-
dition to a fully remoulded state according to an exponential function of
accumulated plastic shear strain, ξ. The quantity ξ95 denotes the value of ξ
for the soil to undergo 95% remoulding, thus reflecting the relative ductility
of the soil. Typical values of ξ95 have been estimated in the range of 10 to 50
(i.e. 1000% to 5000% shear strain) by comparison with cyclic penetration
and extraction data (Randolph, 2004; Einav and Randolph, 2005). δrem is
the strength ratio of soil between fully remoulded and intact state (inverse
of sensitivity, St). su0 is the original shear strength at the reference shear
strain rate prior to any softening.

The strength degradation model adopted is somewhat simplistic. For a
structured or cemented soil, part of the intact strength may be very brittle,
requiring only small plastic shear strains to destroy it, while much larger
strains may still be required to remould the soil fully. This type of strength
reduction would need a two-stage degradation model such as:

su =
[
δrem + (1− δstr − δrem) e

−3ξ/ξ95 + δstre
−3ξ/ξ

95,str

]
su0 (6)
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where the subscript ‘str’ relates to the part of the strength that is due to
structure or cementation. The response of this type of model, for different
values of ξstr, and assuming that ξ95 = 100ξ95,str = 15, is shown in Fig. 13.
This type of strength model would result in a relatively greater proportion
of strength reduction during initial penetration than during subsequent ex-
traction and penetration cycles.

Figure 13. Degradation using a two-stage model.

4.2 Numerical Modelling of Cyclic Penetrometer Tests

LDFE techniques are required for modelling penetrometer tests in order to
follow correctly the flow of soil past the penetrometer, allowing for gradual
softening of the material due to the cumulative shear strains. The effects
of high strain rate, which for typical field rates are around 15 to 20% per
second (4 or 5 orders of magnitude greater than in a slow laboratory test),
and gradual softening compensate for each other. When the two effects
are combined, the resulting penetration resistance is relatively close to the
plasticity solution for ideal material response (Fig. 14).

Strength degradation leads to periodic generation of shear bands, soft-
ening within the shear band, and then discarding of the shear band as a new
one is generated. This leads to an oscillation in the penetration resistance
(Zhou and Randolph, 2007) and a heterogeneous pattern of degradation in
the wake of the penetrometer (see Fig. 15). The improved stability of the
degradation patterns (with reduced numerical diffusion) obtained using par-
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Figure 14. Numerical analysis of T-bar penetration.

tial remeshing of the zone adjacent to the T-bar, rather than full remeshing,
is evident from this figure.

As the soil flows past the penetrometer, it undergoes an average shear
strain, ξk, with values typically 3.3 (330%) for the ball to 3.7 for the T-bar
(Zhou and Randolph, 2009a). Although it has been customary to plot the
degradation of resistance during a cyclic penetrometer test starting from a
cycle number of 0.5 for initial penetration, and 1 during first extraction,
it is more logical to label the initial cycle as 0.25, and the first extraction
as 0.75 (Fig. 16). In this way, an ideal ‘no softening’ (but rate dependent)
value of Nk may be estimated approximately as

Nk,no softening ≈
√

Nk

Nk,ext
Nk (7)

A parametric study performed by means of LDFE analysis (Zhou and
Randolph, 2009b) indicates that this method of estimating Nk,no softening is
accurate to within about 10%, with the accuracy best for ductile soil re-
sponse (high values of ξ95) and worst for brittle response (small ξ95). Cyclic
penetration and extraction tests using full-flow penetrometers eventually
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(a) (b)

Figure 15. Contours of soil softening during T-bar penetration after (a)
2.5 diameters and (b) 3 diameters penetration.

Figure 16. Strength degradation during penetration and extraction cycles
of a full-flow penetrometer.

lead to fully remoulded conditions in the cylindrical column (or rectangu-
lar slot) of soil through which the cyclic test is conducted, and a reduced
penetration resistance (see Fig. 17a).

Degradation curves obtained from the LDFE analyses (Fig. 17b) were



www.manaraa.com

544 M. Randolph

(a)

(b)

Figure 17. Numerical analysis of full-flow penetrometer: (a) penetration
and extraction resistance, (b) degradation response (Zhou and Randolph,
2009b).

fitted using a similar exponential softening curve as in Eq. (6), based either
on the ‘ideal’ (no softening) value of Nk, or the partially softened value
obtained during initial penetration.

Numerical prediction of degradation curves have been compared with
those from field tests (Yafrate and DeJong, 2005) (Fig. 18). The sensitivities
obtained from fall cone tests for the three sites are noted in the figure. It
may be seen that the agreement is reasonably good for Onsoy clay with
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Figure 18. Comparison of fitted relationship for Nk,i/Nk with field data
from Yafrate and DeJong (2005) (Zhou and Randolph, 2009b).

quoted St of 4-6. However, for the highly sensitive clays at Louisville and
Gloucester, the field data show a better match with curves derived from
lower sensitivities of 10 for Louisville (instead of the fall cone value of 22)
and 50 for Gloucester (instead of 88). For all three sites, the shape of the
degradation response is more gradual than from the numerical analysis,
reflecting limitations in the degradation function adopted. The natural
material appears to possess a brittle component of strength that is lost
during initial penetration, after which further strength loss occurs quite
gradually.

Once the soil has been remoulded, to a shear strength of su,rem, it can
be assumed that little further softening occurs, and so the resistance factor
will be different from during initial penetration. There are actually three
main considerations with regard to post-cyclic resistance:

• further softening within each (half) cycle is essentially negligible, so
that the remoulded resistance factor, Nk,rem = qk,rem/su,rem, will in-
crease relative to the equivalent Nk during initial penetration;

• the interface friction between the penetrometer and the soil is likely to
be a higher ratio (perhaps 70 to 90%) of the remoulded shear strength
compared with during initial penetration, again leading to an increase
in Nk;
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• the width of the remoulded region is generally less than the extent of
the ideal penetration mechanism, so that some shearing of soil that
is not fully remoulded continues to occur at the edge of the failure
mechanism.

In fact, theoretical considerations, supported by numerical analysis of
cyclic penetrometer tests, suggest that, as the soil softens during the first
1 or 2 cycles, the width of the failure mechanism reduces in order to take
advantage of the softened soil close to the penetrometer. Gradually though,
the width of the softened zone expands and the mechanism width grows
accordingly. This effect can lead to continuing slow degradation in resistance
over many cycles. Fig. 19 shows contours of shear strength (softened value
normalised by the unsoftened magnitude) and incremental displacements
for a T-bar during the middle of the 5th penetration for a cyclic range of
3 diameters. A zone of fully softened soil extends to a radius of 1.96 times
the T-bar radius, but the flow mechanism extends further, to a radius of
2.28 times that of the T-bar.

Numerical analyses for soil with sensitivity of up to 100 shows that the
width of the mechanism contracts very significantly initially, taking advan-
tage of the much weaker remoulded soil close to the penetrometer. With
subsequent cycles, the zone of remoulded material gradually expands, but
the penetration resistance factor, relative to the remoulded shear strength
remains very high.

From a practical point of view, where the remoulded penetration resistance
is measured after a limited number of cycles (usually 10), the resistance
factor for remoulded conditions, Nrem, will be significantly higher than for
intact conditions, and will increase with increasing sensitivity of the soil.
By contrast, the resistance factor for intact conditions will decrease with
increasing soil sensitivity. Depending on whether the penetration resistance
is compared with the remoulded shear strength measured in a slow test,
such as a laboratory UU test, or a fast test such as a vane shear or fall
cone test, numerical predictions of resistance factors for the ball, for soil of
moderate sensitivity, are around 22 (slow element test) or 15 (fast element
test). These values are reasonably consistent with test data reported by
Low et al. (2010) shown in Fig. 20.
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Figure 19. Final extent of remoulded zones around a T-bar after cycling
(Zhou and Randolph, 2009b).

Figure 20. Variation of remoulded resistance factor with sensitivity (data
from Low et al., 2010).
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5 Application to Pipeline-Soil and Riser-Soil
Interaction

As offshore hydrocarbon developments extend into deeper waters located
further from shore, the pipelines and risers that link the production facility
to the wells, the offloading point, and in some cases provide an export
route to shore, represent an increasingly important part of the development
infrastructure.

In shallow water the development facility is usually fixed to the seabed,
and the production and export pipelines are usually connected to the facil-
ity by vertical ‘risers’. The pipelines are often buried to provide protection
from over-trawling and prevent thermal buckling. In deep water, trenching
and burial is usually uneconomical and there is no need for trawl protec-
tion. Instead, pipelines are usually laid on the seabed without overlying
protection. However, without the restraint provided by burial, alternative
solutions to control the thermal expansion of the pipeline are required.

To connect a floating facility to seabed pipelines, a cost-effective solution
is to use a steel catenary riser (SCR), which is essentially a continuation
of the pipeline hung from the facility. The manufacture and installation of
an SCR is considerably less costly than an equivalent flexible riser, which
has a composite structure. A typical field layout is shown in Fig. 21, with
flowlines linking the various wells, ultimately connecting to a group of SCRs
suspended from the floating production vessel. Flowlines within the field,
and also any export pipelines, are laid from specialist vessels, with the steel
pipeline forming a catenary from the lay ramp down to the seabed. Thus,
during the lay operation, the pipeline configuration is essentially similar to
that for a steel catenary riser. Depending on the sea-state, the pipeline will
be subjected to cyclic motions at the point where it contacts the seabed,
leading to dynamic embedment.

An SCR contacts the seabed at a fixed (average) position, and so any
cyclic motion caused by waves acting on the supporting facility, or current-
induced vortex induced vibration, will give rise to softening of the seabed
sediments and increasing embedment of the riser in what is referred to as the
‘touchdown zone’. Trenches of several diameters deep have been observed
to form within a few months of operation, as shown in Fig. 22, where the
SCR is indicated by the dashed lines (Bridge and Howells, 2007).

A common solution to the thermal expansion of on-bottom pipelines
is controlled lateral buckling, which may involve ∼10 diameters of lateral
movement across the seabed, in order to relieve compressive axial stresses.
Sleepers placed on the seabed prior to laying the pipeline are one means
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Figure 21. Typical field layout in deep water.

Figure 22. Deep trench formation in the touchdown zone of an SCR.

of encouraging lateral buckles to form at specific locations (see Fig. 23,
modified from Jayson et al., 2008).

A variety of techniques may be used to investigate and quantify pipeline
response under monotonic and cyclic loading. These include physical mod-
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elling of pipe elements, on the laboratory floor, in a geotechnical centrifuge
of even directly on the seabed (Hill and Jacob, 2008). Post-lay surveys of
pipelines also offer valuable feedback on the embedment. Ultimately, the
aim is to develop analytical approaches, either through simple conceptual
models that might start from plasticity solutions of pipeline response un-
der combined vertical and horizontal loading (Randolph and White, 2008a;
Merifield et al., 2008a,b) or through finite element analysis (Wang et al.,
2010).

Figure 23. Thermally induced lateral buckling of a deep water pipeline.

6 Static Pipeline Penetration

It is convenient to express the vertical penetration resistance of a pipe in
terms of the net vertical load, V , the pipeline diameter, D, and the shear
strength at the pipeline invert, su,invert as (Randolph and White, 2008b)

V

Dsu,invert
= a

(w
D

)b
+ fb

As

D2

γ′D
su,invert

(8)

where w is the nominal embedment of the invert below the seabed, As is the
nominal cross-sectional area below the level of the seabed (thus contributing
resistance due to buoyancy), and γ′ is the effective unit weight of the soil.
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This may also be expressed in terms of more familiar bearing capacity factors
as (Merifield et al., 2009)

V

Dsu,invert
= Nc +Nb

γ′w
su,invert

where Nc = a
(w
D

)b
and Nb = fb

As

Dw
(9)

Values of the coefficients a and b that define the Nc term have been provided
by Aubeny et al. (2005) for different pipe-soil roughness and soil strength
distributions. Typically a combination of a = 6 and b = 0.25 is sufficiently
accurate.

The buoyancy multiplier, fb, accounts for heave adjacent to the pipeline,
as illustrated by results from large deformation finite element analyses, com-
paring results from two different software packages, for soil with a linearly
varying shear strength of su = sum + ρz (see Fig. 24) where sum is the
mudlines strength intercept and ρ is the gradient with depth, z. The maxi-
mum height of heave, relative to the original seabed, is just over 50% of the
(nominal) pipeline penetration.

Although the additional soil above the mudline has little effect on the pene-
tration resistance term, Nc, the buoyancy effect is increased significantly by
the heave, and should not be neglected in the calculation of total vertical
resistance. A buoyancy factor of fb = 1.5 is needed to match the LDFE
results (corresponding to a value of Nb ∼ 1 at w/D = 0.5), with the buoy-
ancy resistance then representing up to 16% (at an embedment of 0.5D) of
the total resistance.

LDFE analysis has proved a useful tool to derive penetration resistance
curves, including allowing for the effect of heave. However, comparisons
with data from centrifuge model tests show that additional adjustments
must be made to account for strain rate effects and partial softening of the
soil as the pipe penetrates (Zhou et al., 2008; Wang et al., 2010).

7 Pipeline Embedment Due to Cyclic Displacements

Additional embedment of the pipeline, over and above the static penetra-
tion, will occur during the lay operation. There are two effects: the first is
that the local contact force, V , will be greater than the (submerged) pipe
weight because of bending effects in the touchdown zone (Randolph and
White, 2008b); the second is due to cyclic displacement of the pipeline from
wave-induced motion of the supporting vessel. The cyclic displacement of
the pipeline will lead to local remoulding of the seabed sediments and, if
the lateral displacements are sufficient, a ploughing action.
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Figure 24. Comparison of two large deformation finite element analyses
of pipeline penetration (Randolph et al., 2008). Here τinterface is the shear
stress mobilized along the lateral surface of the pipe.

The situation during pipe lay is similar to that for a steel catenary riser
(SCR), with the main difference being that the touchdown zone for the
pipeline gradually moves, as more pipeline is laid. Typical lay rates are 10
to 40 m per hour so that, provided there is no hold up due to equipment
breakages or bad weather, a given segment of pipeline might see only a few
hundred cycles.

The design of an SCR depends critically on the fatigue stresses generated
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in the region where the SCR touches down on the seabed due to vessel
movement and hydrodynamic loading of the catenary. Different levels of
sophistication may be applied to quantify the response in the vertical plane.
Most commercial software is limited to a linear elastic seabed response.
Non-linear models for the vertical riser-soil response have been proposed,
incorporating the uplift resistance arising from tensile ‘suction’ between the
riser and the seabed (Bridge et al., 2004). As the soil is softened under
the action of repeated cycles of displacement, buoyancy effects can become
more significant, leading to a banana shaped response.

Model tests, either on the laboratory floor or in a geotechnical centrifuge,
have been undertaken in order to investigate the effects of cyclic penetra-
tion and extraction. Two examples are shown in Fig. 25, for cyclic vertical
motion at shallow embedment where the effect of buoyancy is very apparent
(Hodder et al., 2008), and Fig. 26 with incremental penetration by several
diameters (Aubeny et al., 2008).

Figure 25. Response of pipeline during vertical cycles (Hodder et al., 2008).

7.1 Non-Linear Seabed Model for Riser Analysis

A phenomenological model has been developed by Randolph and Quig-
gin (2009) to model the non-linear interaction of SCRs in the touchdown
zone. The model adopts limiting backbone resistance curves in penetration
(Pu(z)) and uplift (Pu,suc(z) = fsucPu(z)) and incorporates a hyperbolic re-
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sponse that models high uplift-penetration stiffness at small displacements,
with a stiffness that isKmax times the ultimate penetration resistance, Pu/D
(equivalent average pressure on the riser of diameter D) at that penetration.
The high stiffness for small reversals in movement is an important feature
for assessing riser fatigue (Bridge et al., 2004).

The main features of the model are illustrated in Fig. 27. The basic
hyperbolic model may be expressed as

P (z) = P0 +
ζ − ζ0

A(z) + ζ − ζ0
[Pu(z)− P0]

where A =
Pu(z)− P0

Pu(z)
; ζ = Kmax

z

D
,

(10)

where P0 and ζ0 are the values of P and ζ at the last reversal point.

Figure 26. Cyclic response of deeply embedded pipeline (Aubeny et al.,
2008).

This gives the intended initial stiffness of KmaxPu/D and ultimate asymp-
totic resistance of Pu. Although softening of the soil is not modelled explic-
itly, the form of the model gives rise to incremental penetration as the riser
undergoes cycles of uplift and repenetration. Release of ‘suction’ resistance
during uplift is modelled using an exponential decay term, controlled by
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Figure 27. Non-linear model for riser-soil interaction (Randolph and Quig-
gin, 2009).

the parameter λsuc, which limits the uplift resistance in accordance with
the displacement beyond the point at which the resistance changes to nega-
tive (suction); the repenetration curve reflects the form of the uplift curve,
and also introduces a slight delay (controlled by the parameter λrep) in re-
joining the backbone curve of ultimate penetration resistance, hence giving
rise to incremental penetration with each displacement cycle.

The model has been shown to simulate data from laboratory element
tests reported by Aubeny et al. (2008) with reasonable accuracy. It has
been implemented in the riser analysis software, Orcaflex (Orcina, 2008),
and a typical response for an element of riser within the touchdown zone is
illustrated in Fig. 28 for horizontal vessel motions of ±3 m.

Example fatigue studies have been presented by Randolph and Quiggin
(2009), showing the fatigue life for 0.23 m diameter SCR in water depth of
1600 m, for a typical Gulf of Mexico life-time wave spectrum. For a linear
seabed with stiffness, k (in units of modulus), the fatigue life reduces from
800 years for a stiffness of 200 kPa, to just over 350 years for a stiffness of
3500 kPa (see Fig. 29). For the non-linear soil model, the fatigue life is a
function of how much suction can be sustained during uplift, and also of the
seabed strength profile. As the strength intercept at the mudline increases
from 0 to 3.5 kPa, the fatigue life shows a similar trend to that for the
linear seabed model. The results are consistent, since Kmax has been taken
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as 200, so that the effective small displacement stiffness for a given mudline
strength intercept, sum, is

k′ = Kmax
Pu

D
≈ 5Kmaxsum = 1000sum (11)

Figure 28. Example response of riser in the touchdown zone.

As may be seen, the proportionality constant of 1000 matches the relative
scales in the plot. In reality, the cyclic motion of the riser in the touchdown
zone will remould the soil, and also encourage water entrainment. It is
therefore more reasonable to assume a zero strength intercept at the mudline
for fatigue assessment. That leads to much increased fatigue life, in excess
of 800 years for a shear strength gradient of 3 kPa/m, assuming suction
resistance limited to 20% of the ultimate penetration resistance.

7.2 Centrifuge Model Tests for Assessing Pipeline Embedment

Model tests on pipeline segments have been used extensively for design
purposes to evaluate the axial and lateral resistance, and also to quantify
the tendency to embed under the action of vertical and horizontal cyclic
motion. A good illustration of how such tests may be used to develop
predictive models that allow for gradual softening of the soil is provided by
Cheuk and White (2010). They report tests undertaken in two contrasting
soils, kaolin clay and a high plasticity clay from offshore West Africa.
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Figure 29. Effect of riser-soil interaction model on SCR fatigue life.

Cyclic T-bar tests, without breaking the surface of the sample, showed
sensitivities in respect of the penetration resistance of around 2 (Fig. 30).
However, it is likely that where the soil is remoulded with free access to
water (as for a pipeline at the seabed surface) the actual loss in strength
may be significantly higher. The T-bar tests also give an indication of the
number of cycles required to remould the soil.

A typical response under displacement limited horizontal cycles, increasing
from Δu/D ∼ ±0.05 to 0.2, with constant vertical load applied to then
pipe segment, is shown in Fig. 31. The static embedment is around 0.1D,
at which point V/Dsu is just over 3. As the embedment increases under
the cyclic motion, V/Dsu decreases, while ΔH/Dsu (where H stands for
the horizontal force per unit length) increases initially as the pipe becomes
more deeply embedded, but then decreases. A summary of the vertical load
and penetration paths for four tests, two in each soil type and at various
vertical loads, is given in Fig. 32. It is clear that the additional penetration
under cyclic motion is much greater than might be estimated purely on the
basis of the sensitivities measured in the T-bar tests.
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Figure 30. Cyclic T-bar tests in kaolin (Cheuk and White, 2010).

Figure 31. Response of pipeline segment to horizontal cycles (Cheuk and
White, 2010).

7.3 Conceptual Model for Predicting Pipeline Embedment

In order to predict pipeline embedment during horizontal cyclic motions, it
is necessary to combine a number of concepts including:

• yield functions in vertical-horizontal load space for varying embed-
ment;
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Figure 32. Pipeline embedment paths under cyclic motion (Cheuk and
White, 2010).

• flow rules corresponding to the yield functions;

• softening of the soil due to remoulding resulting from cumulative shear
strain.

An approach involving these concepts is described by Cheuk and White
(2010), who proposed a softening model similar to that adopted for analysis
of full-flow penetrometers tests, in the form:

sus/su = δrem + (1− δrem) e
−3ζ∗ ∑

u/D/
∑

(u/d)
95 (12)

The normalised (cumulative) horizontal displacement, u/D, is taken as a
surrogate for cumulative shear strain, and an adjustment factor, ζ∗, is intro-
duced to allow for the gradual embedment of the pipe into fresh (unsoftened)
soil. Thus, at any stage during embedment an attempt is made to estimate
an average degree of softening in the soil surrounding the pipe.

Yield functions for unbonded and bonded pipes are taken from Randolph
and White (2008a) and Merifield et al. (2008a,b), examples of which are
shown in Fig. 33 for bonded and unbonded (immediate breakaway conditions
at the trailing edge of the pipe) cases in uniform strength soil or for a
normalised strength gradient of kD/sum = 5. While it is not clear whether
the pipe should be regarded as bonded or unbonded, the assumption is
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that, during cyclic horizontal displacements, the load point will lie near the
parallel point of the yield envelope (where H/Dsu is a maximum).

Flow rules arising from the yield envelopes for bonded and unbonded
pipes follow similar gradients of dw/du against V/Vmax over much of the
vertical load range (Fig. 34). The critical point is where dw/du = 0 (the
parallel point), which occurs for V/Vmax ∼ 0.4 for the unbonded case. This
suggests that, even without softening, the pipe would penetrate to a depth
where the uniaxial (H = 0) penetration resistance was some 2.5 times the
submerged pipe weight. With full softening, the final embedment would be
to a depth where the original (unsoftened, H = 0) penetration resistance
was ∼ 2.5StV .

Figure 33. Example yield envelopes for bonded and unbonded pipes.

The full procedure for predicting the gradual embedment of the pipe
during cyclic horizontal motion is described by Cheuk and White (2010).
Fig. 35 shows good agreement of their predictions with the centrifuge data.

7.4 Large Displacement Finite Element Analysis of Pipeline Em-
bedment

The most sophisticated approach to simulating pipeline embedment under
cyclic motion is by means of large displacement finite element (LDFE) anal-
ysis. Simulation of the centrifuge model tests referred to above has been
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Figure 34. Flow direction derived from pipeline yield envelopes.

Figure 35. Comparison of calculated pipe embedment with measured data.

reported by Wang et al. (2009). The large displacement (or updated geom-
etry) is essential in order to model the significant changes in geometry that
occur, and to allow for the flow of softened soil around the pipeline. Soften-
ing and rate dependency is modelled in the same way as for the analysis of
full-flow penetrometers described in the previous lecture. An example pen-
etration history showing the magnitude of cyclic horizontal load for motion
of ±0.05D, is shown in Fig. 36.

In order to match the model test data, it was necessary to adopt a soil
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sensitivity of St = 4, which is higher than the resistance sensitivity indicated
from the T-bar tests (see earlier Fig. 30). Part of the difference is because
the reduction in penetration resistance from a T-bar test will be less than
the sensitivity of the soil, but in addition water entrainment is likely to have
occurred during the cyclic tests (and also during a real pipe lay process).
That would lead to increased water content of the soil, and increased loss
of shear strength as it is remoulded. Comparisons of the pipe embedment
with increasing number of cycles showed excellent agreement between the
model test data and the LDFE results (Wang et al., 2009).

Figure 36. Gradual pipeline embedment and local softening of soil.

8 Pipeline Motion During Lateral Buckling

As a final illustration of the power of LDFE analysis for modelling soil-
structure interaction while the soil is being remoulded, Fig. 37 shows a
simulation of the lateral displacement of a pipeline, under fixed vertical load,
such as might occur during thermally-induced lateral buckling. Comparison
of the LDFE results (Wang et al., 2010) and data from centrifuge model
tests (Dingle et al., 2008) shows very good agreement, with the only slight
discrepancy being omission of the initial peak in lateral resistance from the
centrifuge tests, which is attributable to suction on the trailing face of the
pipe.
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As the pipeline moves laterally, a berm of (partially remoulded) soil
accumulates in front of it (see Fig. 38a, from LDFE analysis). The lateral
resistance is affected by the berm, which may be modelled as equivalent
to increased embedment, w′, as indicated in Fig. 38b (Wang et al., 2010).
Assuming that the berm is square in elevation, and that the average degree
of remoulding is about 50%, the equivalent embedment is given by

w′

D
=

w

D
+

h′
berm

D
=

w

D
+

√
Aberm

0.5StD
(13)

where h′
berm represents the adjusted height of the lateral soil berm, and

Aberm its section area.

Figure 37. Pipeline response under lateral buckling.

It transpires that a common envelope of lateral resistance, H/Dsu, as
a function of equivalent embedment, w′/D, is followed, independent of the
value of V/Vmax (or the inverse, the overload ratio, R). This is illustrated
in Fig. 39 (Wang et al., 2010).
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(a) (b)

Figure 38. Development of soil berm and modelling as equivalent embed-
ment: (a) partially softened soil berm from LDFE analysis; (b) modelling
of berm as equivalent embedment

Figure 39. Envelope of pipeline lateral resistance with embedment.

9 Summary

Interpretation of field penetrometer tests has made significant advances with
the development of full-flow penetrometers of simple cylindrical or spherical
geometry. Strain rate dependence of shear strength, and partial softening
during the flow of soil around the penetrometer, have been shown to have
a significant effect, particularly since strain rates in field tests (both pene-
tration and vane shear tests) are several orders of magnitude higher than a
slow laboratory element test. In estimating the remoulded shear strength,
consideration must therefore be given to the strain rates during the test,
and also the strain rate relevant to the design application.

Cyclic penetration and extraction tests using full-flow penetrometers al-
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low direct in situ measurement of the penetration resistance for remoulded
conditions. Empirical correlations against remoulded shear strength data
are often very scattered, but numerical modelling has allowed a theoretical
framework to be established. A key finding is that resistance factors for
remoulded conditions will be significantly higher than for initial (intact)
conditions, with the difference increasing with increasing sensitivity of the
soil.

Gradual remoulding of soil due to cumulative shear strain during cyclic
loading is an important aspect of the interaction of pipelines and risers
into the seabed. Site investigation practice for deep water pipelines now
generally incorporates in situ cyclic T bar penetrometer testing, allowing the
sensitivity of the seabed to be assessed, including any tendency to entrain
water and thus soften further.

Applications considered in this chapter include (a) steel catenary risers,
where the interaction with the seabed in the touchdown zone determines the
fatigue life due to bending moment changes in that region; and (b) pipeline
embedment during laying due to cyclic motion arising from wave-induced
movement of the lay vessel.

Examples have been given of the various degrees of sophistication used
in practice to model the softening of the soil due to (relatively large) cyclic
strains. The phenomenological hyperbolic model for riser-seabed interac-
tion might be regarded as excessively crude, but it is a significant advance
on the widespread practice of representing the seabed as elastic springs.
Future advances would endeavour to incorporate the more sophisticated
models currently being developed for pipeline embedment. These are based
on combining yield functions in horizontal-vertical load space, with a dam-
age factor for the soil strength based on the cumulative normalised cyclic
displacement.

Numerical analysis is also developing to the extent where good simu-
lation of test data is being achieved. Large displacement formulations are
necessary, modelling non-linear geometric changes as the pipeline penetrates
the soil, or moves laterally by a significant distance, ploughing a berm of
material ahead of it. A by-product of the large displacement approach (with
remeshing and interpolation of stresses and other material parameters) is
that it is straightforward to incorporate rate dependency and softening of
the shear strength.
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List of Symbols

a nondimensional coefficient §6
A =

Pu(z)− P0

Pu(z)
§7.1

Aberm section area of the lateral soil berm §8
As nominal cross-sectional area below the level of the seabed §6
b nondimensional coefficient §6
d penetrometer diameter in the FE computations §4.1, §7.3
dfield penetrometer diameter in field tests §4.1
D pipeline diameter §6, §7, §8
f interpolating factor §3
fb buoyancy multiplier §6
fs sleeve friction §2
fsuc =

Pu,suc

Pu
§7.1

h′
berm adjusted height of the lateral soil berm §8

H horizontal force per unit length §7, §8
k seabed stiffness §7.1, §7.3
k′ effective small displacement stiffness §7.1
Kmax stiffness multiplier §7.1
Nb = fb

As

Dw
§6

Nc = a
(w
D

)b
§6

Nk resistance factor §3
Nrem remoulded resistance factor §3, §4
P penetration/uplift force per unit length §7.1
P0 value of P at the last reversal point §7.1
Pu limiting penetration force per unit length §7.1
Pu,suc limiting uplift force per unit length §7.1
q net bearing resistance §3
qin penetration resistance §3
qout extraction resistance §3
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qrem penetration resistance in remoulded soil §3
R overload ratio §8
qt total bearing resistance §3
su shear strength §1, §3, §4, §6, §7
su0 original shear strength prior to any softening §4.1
sum mudlines strength intercept §6, §7.3
su,invert shear strength at the pipeline invert §6
su,rem remoulded shear strength §1
St soil sensitivity §1, §3, §4, §7, §8
t time §4.1
u horizontal displacement §7.2, §7.3
vp penetration rate in field §4.1
V vertical force per unit length §6, §7, §8
Vmax maximum vertical force per unit length §7.3, §8
w nominal embedment §6, §8
w′ embedment equivalent to the soil berm §8
z depth §6, §7
γ′ effective unit weight of the soil §6
γ̇ shear strain rate §4.1
γ̇max maximum shear strain rate §4.1
γ̇ref reference shear strain rate §4.1
δ displacement §4.1
δrem strength ratio of soil between fully remoulded and intact

state
§4.1, §7.3

δstr strength ratio of soil between structure or cementation
and intact state

§4.1

ε1 major principal strain §4.1
ε3 minor principal strain §4.1
ζ = Kmax

z

D
§7.1

ζ0 value of ζ at the last reversal point §7.1
ζ∗ adjustment factor §7.3
λrep controlling parameter of delay §7.1
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λsuc controlling parameter of suction resistance §7.1
μ rate parameter §4.1
ξ plastic shear strain §4.1
ξ95 value of ξ for the soil to undergo 95% remoulding §4.1
ξk average shear strain §4.2
ρ gradient of su with depth §6
σv total overburden stress §3
τinterface shear stress mobilized along the lateral surface of the pipe §6
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